SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

CONTINUATION OF RESEARCH
INTO SOFTWARE FOR SPACE
OPERATIONS SUPPORT

FINAL REPORT
VOLUME |

NASA Grant No. NAG 9-388
SwR! Project No. 05-2984

Prepared by:

Mark D. Collier
Ronnie Killough
Nancy L. Martin

Prepared for:

NASA
Johnson Space Center
Houston, Texas

November 30, 1990

Approved:

ot (T onr

Melvin A. Schrader, Director
Data Systems Department

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD ®* POST OFFICE DRAWER 28510 ® SAN ANTONIO, TEXAS, USA 78228-0510 ® (512)884-5111 ® TELEX 244846

November 30, 1990

Ms. Linda Uljon

Building 30, DK32

NASA - Johnson Space Center
Houston, Texas 77058

Subject: Delivery of the Final Report for Continuation of
Research into Software for Space Operations Support;
NASA Grant NAG 9-388; SwRI Project Number 05-2984

Dear Ms. Uljon,

Enclosed with this letter is the final report pertaining to the
research performed for workstation executive technology applicable to
environments such as the upgraded Mission Control Center. This document
includes all code and information for the four research efforts performed
during the course of this grant, including the HISDE conversion, the Real-
time widget prototype, the X Windows performance evaluation, and the X
Windows/Motif-based Display Manager prototype. If you have any questions
or comments, please call me at (512) 522-3437.

Sincerely, Approved:
A clren add

Mark D. Collier Melvin A. Schrader
Senior Research Analyst . Director
Software Engineering Section Data Systems Department

Data Systems Department
MDC:vc
Enclosures

cc: Nancy L. Martin
Ronnie Killough
Susan B. Crumrine
William A. Bayliss
Thomas J. Purk, NASA-JSC, BG 211
NASA Scientific and Technical Information Facility (2 copies)

SAN ANTONIO, TEXAS
HOUSTON, TEXAS * DETRGIT, MICHIGAN ¢ WASHINGTON, DC

T—

1.0
2.0

3.0

Table of Contents

INTRODUCTION....ccooseeeneeer
RESEARCH BACKGROUND ..

ooo

2.1 NASA Grant NAG 9-269 Background

..

RESEARCH PERFORMED

Final Report INTRODUCTION
/

1.0 INTRODUCTION

This document serves as the final report describing the activity on NASA Grant NAG 9-388,
which is entitled “Continuation of Research in Software for Space Operations Support”. The pur-
pose of this grant was to continue the research direction defined for NASA Grant NAG 9-269, dur-
ing which SwRI developed a prototype workstation executive called the Hardware Independent
Software Development Environment (HISDE). The research direction of this grant was to research
and evaluate software technologies relevant to workstation executives and to use HISDE as a test
bed for prototyping efforts.

This document will describe the background for the research grant and describe all research
performed.

2.0 RESEARCH BACKGROUND

During the past few years and continuing in the future, many centralized computing installa-
tions are migrating to environments characterized by distributed processing. This migration is driv-
en primarily by the low cost and high performance delivered by state-of-the-art graphic worksta-
tions. Such an environment normally consists of a large number of workstations which are in tumn
connected via one or more high-speed networks.

Although a workstation-based distributed processing environment offers many advantages,
it also introduces a number of new concerns. One problem is that engineering-class workstations
most commonly use the UNIX operating system, which is difficult for computer novices to use ef-
fectively. Also, connecting a large number of workstations and expecting them to work as an inte-
grated system is not easily achieved. The introduction of so many separate processors makes con-
figuration management and security a real concern. In fact, the very flexibility which is inherent in
workstations often becomes a problem. This is especially true for real-time critical command and
control systems in which a failure or security break could have disastrous results.

In order to solve these problems, allow the environment to function as an integrated system,
and present a functional development environment to application programmers, it is necessary to
develop an additional layer of software. This “executive” software integrates the system, provides
real-time capabilities, and provides the tools necessary to support the application requirements.
Such an executive will be required for use in evolving systems such as the ground-based control
centers planned at Johnson Space Center. These command and control environments will use a dis-
tributed processing architecture to provide real-time processing of telemetry and command data.

2.1 NASA Grant NAG 9-269 Background

For NASA Grant NAG 9-269, which was entitled “Research in Software for Space Opera-
tions Support”, SwWRI developed the HISDE prototype to serve as proof-of-concept for a hardware-
independent workstation executive. The HISDE prototype introduced a number of advanced soft-
ware technologies and concepts including:

. Exclusive use of software standards:

SVID UNIX Operating System
X Windows
GKS and PHIGS

- ISO OSI Communications

#

Southwest Research Institute Page 1 Workstation Executives

Final Report RESEARCH PERFORMED

Through the use of standards, HISDE was easily ported across multiple vendor work-
stations.

Open use of UNIX - through a more flexible design and configuration management
scheme, HISDE provided access to the UNIX file system via the familiar UNIX com-
mand line interface.

CM Manager Workstation - this concept involves a workstation to which all user appli-
cations are loaded with certified libraries prior to being mission certified and uploaded
to a configuration management host.

The purpose of this continuation grant was to research software technologies relevant to
workstation executives. The HISDE prototype was used as a test bed for prototyping and practical
evaluation of identified technologies.

3.0 RESEARCH PERFORMED

The research performed on this grant was directed towards the introduction of new X Win-
dows software concepts and technology into workstation executives and related applications. The
four research efforts performed include:

Research into the usability and efficiency of Motif - this effort consisted of converting
the existing Athena widget-based HISDE user interface to Motif. This research demon-
strated the usability of Motif and provided insight into the level of effort required to
translate an application from one widget set to another.

Prototype a real-time data display widget - this effort consisted of researching methods
for and prototyping the selected method of displaying textual values in an efficient
manner. The prototype widget can be used by NASA in special purpose user applica-
tions and in system applications such as the Display Manager, which must display large
amounts of text in an efficient manner.

X Windows performance evaluation - this effort consisted of a series of performance
measurements which demonstrated the ability of low-level X Windows to display tex-
tual information. The performance of X Windows was compared to the performance of
similar operations performed in Graphic Kernel System (GKS) calls.

Convert the Display Manager to X Windows/Motif - the Display Manager is the appli-
cation used by NASA for data display during operational mode. This application pri-
marily uses GKS for data display and user interface, which is somewhat inefficient and
difficult for the basis of a user interface. SWRI developed a prototype of the Display
Manager which only used X Windows and Motif for data display and user interface.

For more information on each of these efforts, refer to the following four sections of the doc-
ument. Each section provides a description of the research effort and includes all relevant code and/
or performance data.

Southwest Research Institute Page 2 Workstation Executives

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

CONTINUATION OF RESEARCH IN SOFTWARE
FOR SPACE OPERATIONS SUPPORT

RESEARCH INTO THE USABILITY AND
EFFICIENCY OF MOTIF

NASA Grant No. NAG 9-388
SwRI Project No. 05-2984

Prepared by:
Mark D. Collier
Nancy L. Martin
Ronnie Killough

Prepared for:
NASA
Johnson Space Center
Houston TX 77058

November 30, 1990

1.0
2.0
3.0
4.0
5.0

INTRODUCTION

oo

RESEARCH GOALS ..ciiinisincncsnnsnisncsansasssnssnssisssssssassansasssssssssnsssssasssssas
RESEARCH DETAILS....occcccisstmsncsninessnssssssasonsresssstssssassassassnssssonsassacsassase
RESEARCH CONCLUSIONS ...ccciintiunsacnnsssisnsassensassasssisasssassassasssnssessasse

ATTACHMENTS

Motif Research INTRODUCTION
f

1.0 INTRODUCTION

The Open Software Foundation (OSF) distributes an X Windows-based graphic user inter-
face system called Motif. Motif has become a standard and is the default X Windows-based user
interface for a large number of workstations available at this time. Motif includes a highly func-
tional widget set, a window manager, a user interface language, and a style guide.

As an exercise to demonstrate Motif, both in terms of appearance and usability from a pro-
gramming standpoint, SWRI converted the user interface for the Hardware Independent Software
Development Environment (HISDE) to Motif. This involved replacing the existing interfaces to
the MIT Athena widget set with the corresponding interfaces for Motif.

2.0 RESEARCH GOALS

. Demonstrate the “look and feel” of Motif within the context of an application which is
familiar to NASA (HISDE).

. Use Motif and formulate opinions on its usability, performance, and ease of transition
from other widget sets.

3.0 RESEARCH DETAILS

When HISDE was developed, the introduction of improved widget sets was anticipated. The
majority of the access to widget-specific functions was through a set of library functions which
both made it easier to use the widgets and hid the details of the widgets from the actual application
code. Therefore, the first step in converting from Athena to Motuf widgets was to update these li-
brary functions. This was a relatively simple process which included converting user interface
functions to Motif widgets and supporting functions.

The next step was to convert the actual application level code. Due to the amount of time
available for this effort, only a subset of the HISDE user interface clients were actually converted.
The clients which were converted include the following:

. h_advisory - advisory/message display client.
. h_bulletin - host advisory display client.

. h_cm_menu - configuration management user interface client.
. h_cmd - command interface client.

. h_help - help client.

. h_info - system information client.

. h_info_a - system information client.

. h_login - login client.

. h_logout - logout client.

. h_menu_edit - menu editor client.

+ h_msg look - advisory/message browse client.
. h_pbi_edit - PBI editor client.

. h_talk - remote communications client.

#

Southwest Research Institute Page 1 Workstation Executives

Motif Research RESEARCH CONCLUSIONS
“

Due to the time available for this conversion effort, the following clients were not completely
converted to Motif.
. h_menu - this client implements user-defined menus, which were not available in the
Athena widget set. Motif includes a rich collection of menus, therefore rendering this
client obsolete.

. h_cm_status - this client is the user interface for the CM Manager Workstation. Con-
version of this client was begun, but not completed.

. h_pbi - this client displays push buttons used to emulate Push Button Indicators (PBI’s).
Conversion of this client was begun, but not completed.

. h_status - this client provides system status displays. Conversion of this client was be-
gun, but not completed. This client depends on a widget (the load widget) from the Ath-
ena widget set. Conversion of this client to Motif requires integration of widgets from
two different sets.

Because the source code for these clients was not in a finished state, the code is not included
in this document. The actual interim code is however present on the delivered set of tapes.

Note that Motif includes a User Interface Language (UIL) which purportedly simplifies de-
velopment of user interfaces. After review of this language it was determined that direct use of the
Motif widget set was more efficient.

4.0 RESEARCH CONCLUSIONS

Several important conclusions were drawn from this research effort. These conclusions in-
clude the following:

. Mortif provides a highly functional and robust set of widgets. The Motif widgets are su-
perior to both Athena and Hewlett Packard widgets in terms of functionality, usability,
documentation, and reliability.

. Transition from one set of widgets to another is a relatively simple process. This is es-
pecially so if the actual interfaces to the widgets are isolated from application code. If
this is not done, transition will be possible, but will require a very large number of te-
dious changes.

. The Motif widget set, due to its large size, greatly increases the size of an executable
program. In an operating system which does not support shared libraries, a copy of the
widget set will be present in every application. This will quickly use up memory and
swap space.

. The Motif widget set provides acceptable performance. In applications demanding high
performance display of graphics, Motif could be used to develop the user interface and
to provide windows in which lower level functions would be used for high performance
graphics display.

. Motif provides the concept of “gadgets”, which are an alternative for many simple wid-
gets such as labels, push buttons, and toggle buttons. Unlike a widget, a gadget does not
require display of an individual window and therefore is faster and more efficient (at a
cost of less functionality and configurability).

“

Southwest Research Institute Page 2 Workstation Executives

Motif Research ATTACHMENTS

5.0 ATTACHMENTS

The following pages contain the actual code for the translated HISDE user interface. The
code and related files which are present include:
. User interface library Makefile and code.
. Makefiles and code for each of the converted clients:
h_advisory.
h_bulletin.
h_cm_menu.
h_cmd.
h_help.
h_info.
h_info_a.
h_login.
h_logout.
h_menu_edit.
h_msg_look.
- h_pbi_edit.
h_talk.

—

Southwest Research Institute Page 3 Workstation Executives

Motif Research ATTACHMENTS
“

ATTACHMENT 1 - User
Interface Library

\
Southwest Research Institute Page 4 Workstation Executives

Makefile

YT TrTIrrrrrr R R R R R R A A R AR A 2R AR R AR 2222 Ad Rt AR AR Attt i htsdisd

Makefile for the HISDE user interface library. *
ERERRE R RN RN RN RN RN RN RN RN R RN RN RN RN R AR RN R RN Rty

#

Define the target which this file is to create.
*

TARGET = libui.a

#

Initialize include and library search paths to include current directory and the
HISDE directories.

#

INCDIR = /hisde/src/include
LIBDIR = /usr/lib

INCDIRS = =TI, ~I$(INCDIR)

#

Define the libraries to search. This includes the HISDE library and all X

windows libraries.
#

LIBRARIES = -lhisde -1Xaw -1Xt -1X11

#

Define the compiler and linker flags.

#

CFLAGS = -0 $(INCDIRS)

LDFLAGS = =0

#

Define any programs and options to use.
#

AR = ar rv

RM = rm -f

RANLIB = ranlib

#

Define all objects which make up this target.
.

OBJS =\

create_label.o\
create_cmd.o\
create_cas.o)\
create_form.o\
create_text.o\
create_tog.o\
display_msg.o\
1d_text_wid.o\
upd_text_wid.o\
ins_text_wid.o\
clr_text_wid.o\
get_text_wid.o\
get_txts_wid.o\
get_txtp_wid.o\

e stares ORIGINAL PAGE IS
OF POOR QUALITY

Makefile

Define all header files required.

#
HDRS =\
$ (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)

$(TARGET) : $(OBJS)
$(AR) S$(LIBDIR)/$(TARGET) $(OBJS)
$ (RANLIB) $(LIBDIR)/S(TARGET)

$(OBJS) : $ (HDRS)

ORIGINAL PAGE |§ ~—
OF POOR QUALITY

bad_syntax.c

/**'**ﬁt*itt***t**ittﬁ**tit**ﬁ**t*ﬁ***t*ﬁ***iIiQt****ttt**iﬁt*t**'t*titt*i***ilt!!'tttttt*

» MODULE NAME AND FUNCTION (bad_syntax)

This function is called to output a warning to the system message client to inform the
user that he has specified an invalid command syntax. This function formats the mes-
sage, outputs it, and calls (exit) to terminate the client.

SPECIFICATION DOCUMENTS:

*

x

x®

®

*

. g

*

*

* /hisde/req/requirements
* /hisde/design/design
*

*

*

*

*

*

*

*

*

ORIGINAL AUTHOR AND IDENTIFICATICON:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*
*
*
*
*
*
*
x
*
L]
L
*
*
*
ﬁ*iti*ﬁ*tit***t**t*ﬁt**ti****i*ti***i*t*I*it*tt****iﬁ**t**t*****t***i***t*i**t*ttt***ttt/

#include <hisde.h>

int bad_syntax (syntax)

char *gyntax; /* String containing the correct syntax of the
* calling client. It will be output to the system
* message client.

*/
{
/*
*+ pefine the string which will be formatted with the message.
*/
static char message [MAX_MESSAGE_LENGTH] = "Tnvalid Syntax - Try: ";
/t

* Concatenate the correct syntax string to the warning string and output to the
system message client. Upon return, exit from the client.

h_message (MSG_WARNING, strcat (message, syntax) };
exit (0)

O
- _\‘,.‘\. . :‘A"“‘AC':'E ,S
UE 10500 oy a0 vy

/q

clr_text_wid.c

/ttt**t*i*t*ﬁttﬁt*t*ﬂ'**t*t*****************tﬁtt**t*t****t**ttﬁ******t*t*tttt*tttt*tttﬁ*ttt

* MODULE NAME AND FUNCTION (clear_text_widget)

*
* This function is used to clear all text within a text widget.

T

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

L3
*
*
*
*
*
*
x*
*
*
*
*
*
*
t*tti**t*********t*t*t*t*******t***t*i***tit*****t**t*i****tt***tt*t**t*t***!*****ttt*tt/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

#include <Xl1ll/Intrinsic.h>
#include <Xm/Text.h>

void clear_text_widget (widget)

Widget widget: /* Pointer to the text widget which will be cleared
* of all text.
*/
{
/% e
* Clear all text from the widget.
*
/

XmTextSetString (widget, "™);

create_cas.c

/***'**'i*ttttt*t*t***t*t**ttt*t**tti**tti‘ktttt*tﬁ****iit***iti*i*itttt****!'*t!*'*tttttit

* MODULE NAME AND FUNCTION (create_cascade)

*
This function is called to create a MOTIF cascade widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ﬁttiﬁt**ﬂtt*i*t******tt*ttit*****t***ttﬁi**t*ittt*t**ti***iﬁt**ﬁi***!**ti*tttit*ttt/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

#include <X1l1l/Intrinsic.h>
#include <Xm/CascadeB.h>

Widget create_cascade (instance, parent, menu, label)

/* This function returns the return value of the

* XtCreateManagedWidget function call. This will
* be a pointer to a widget.

*/

char *instance, /* The instance name of the widget. It uniquely
*» defines the widget.
*/
label; / The string which this command widget will display.
*/

Widget parent, /* The parent widget to which the command widget will
* be attached.
*/
menu; /* Menu which will be activated when the cascade is
* selected.
x/

Define the array which will contain all arguments required to create the command
widget.

Widget widget; /* Pointer to the created widget.
*/

Arg args(1 1: /* Argument list for cascade widget.
*/

register int count = 0; /* Counts the number of arguments initialized.
*/

/*
* attach it to the parent, and initialize all arguments.

S */

XtSetArg (args(count], XmNsubMenuld, menu), count++;

create_cas.c

Create and manage the cascade widget. Return the widget pointer to calling function. _

XtManageChild (widget = XmCreateCascadeButton (parent, label, args, count));

return (widget).

create_cmd.c

/'tt**’li‘ti*ﬁ*t*ﬁtﬁ*'ttt**ttt*f*tt**‘t**iﬁ*t****t"**t'tt*i**t***tt***tt**ittt*tt*t*tttttitw
» MODULE NAME AND FUNCTION (create_command)

*

This function is called to create a command widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
¥
*
*
*
*
*
”
*
*
*
L
*
*
*
*iﬁt*t**ﬁ*titﬁ*tt*ﬁﬁ****ﬁi***i'ﬁtt***ﬁi*ﬁ***tit*ttt*lﬁ**ttit'**i'*ﬁttQttt"*t**titttt/

*
*
*
*
*
*
]
*
*
*
*
*
*
*
*
*

* K

#include <X11/Intrinsic.h>
#include <Xm/PushB.h>

Widget create_command (instance, parent, label, callback)

/* This function returns the return value of the
*» XtCreateManagedWidget function call. This will
* be a pointer to a widget.
*/

char *instance, /* The instance name of the widget. It uniquely
* defines the widget.
*/
label; / The string which this command widget will display.
*/

Widget parent; /* The parent widget to which the command widget will
* be attached.
*/

XtCallbackList callback:; /* Specifies an array containing the list of func-
* tions called upon command callback. It may be
* NULL if no functions are present.

*/
{

Widget widget; /* Pointer to the created widget.
*/

XmString string; /* Compound string to which the label is converted.
*/

Arg args(2 1 /* Argument list used to initialize widget resources.
*/

register int count = 0; /* Incremented each time a argument is initialized

* in the (args) array. When the widget is created,
*» this value which indicate the number of arguments.
*/

/t
* Convert the label to a compound string and save in the argument list.
*/

create_cmd.c

string = XmStringLtoRCreate (label, XmSTRING_DEFAULT_CHARSET);
XtSetArg (args(count], XmNlabelType, XmSTRING):; count++;
XtSetArg (args{ count], XmNlabelString, string); count++;

/t
* Create and manage the widget. Free the memory allocated for the compound string,
*/
XtManageChild (widget = XmCreatePushButton (parent, instance, args, count));
XmStringFree (string):;
/t
* If the command has a callback, add it to the widget.
*/

if (callback)
XtAddCallbacks (widget, XmNactivateCallback, callback)

return (widget):

create_form.c

/'iiﬁ'*t**tlﬁiiiﬁ*iiiﬁ*it*ti*ttti**tkiﬁt*iﬁtﬁ***t*t*t*iﬂi‘*ttﬁﬁ***ﬁ***t**i*’*tt*tt*t*t*ttt

* MODULE NAME AND FUNCTION (create_form)

*
This function is called to create a MOTIF form widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
pData System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
i*ﬁtﬁ****it***ikﬁ**t!i***ti!ﬂ‘t**i**ﬁ***tﬁt*tti*tt***titﬁt*itﬁ*iti*ttt**i*ii*tt*tttﬁt/

*
*
*
*
*
x
*
*
L
*
*
*x
*
>
*
*

#include <X1l/Intrinsic.h>
#include <Xm/Form.h>

Widget create_form (instance, parent)
/* This function returns the return value of the

* XtCreateManagedWidget function call. This will
* be a pointer to a widget.

*/
char *instance; /* The instance name of the widget. It uniquely
* defines the widget.
*/
Widget parent; /* The parent widget to which the form widget will
* be attached.
*/
{
Widget widget: /* Pointer to the created widget.
*/
/t
* Create and manage the form widget. Return the widget pointer to the calling function.
x/

XtManageChild (widget = XmCreateForm ({ parent, instance, NULL, 0))

return (widget):

create_label.c

/t**ﬁ*ﬁ*ii**ittttt'**tt***t***ii‘*******tit***tlt*tt*****tt*t*tﬁ*tt**i**!*tﬂt#ﬂtﬁttttttttt

* MODULE NAME AND FUNCTION (create_label)

* T
* This function is called to create a MOTIF label widget. ‘
x *
* *
* SPECIFICATION DOCUMENTS: *
* *
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
ttii****t****t*tt**tﬁ**t*tt*ttk*tttt*tﬁ*tttt*tttttwt****t*ttt***tt*t*t*!*tttttttttttt/

#include <X1ll/Intrinsic.h>
#include <Xm/Label.h>

Widget create_label (instance, parent, label)
/* This function returns the return value of the

* XtCreateManagedWidget function call. This will
* be a pointer to a widget.

*/ R
char *instance, /* The instance name of the widget. It uniquely
* defines the widget.
*/
label; / The string which this label widget will display.
*/
Widget parent; /* The parent widget to which the label widget will
* be attached.
*/
{
Arg args(2]; /* Argument list used to initialize the widget
* resources.
*/
Widget widget; /* Pointer to the created widget.
*/
XmString string; /* Points to the compound string created for the
* label.
*/
register int count = Q. /* Counter set to the number of arguments initialized.
*/
/*
* Initialize a compound string and set in the resource list.
* lists.,
*/

string = XmStringLtoRCreate (label, XmSTRING_DEFAULT_CHARSET) ;
XtSetArg (args(count], XmNlabelType, XmSTRING): count++;
XtSetArg (args! count], XmNlabelString, string) count++;

create_label.c

Create and manage the widget. Free the space allocated for the compound string.
* Return the widget pointer to the calling function.

XtManageChild (widget = ¥mCreatelabel (parent, instance, args, count))/
xmStringFree (string };

return {(widget):

create_text.c

/**tit**tﬁttti****ﬁ'*****ﬁﬁt*t*i‘.***itt***‘k****tﬁ*****itﬁ***tﬁ**tt*tt****ﬁ***‘R**i*tt*tttxt

* MODULE NAME AND FUNCTION (create_text)

*

* This function is called to create a MOTIF text widget. —~—
* x
* *
* SPECIFICATION DOCUMENTS: *
*x *
* /hisde/req/requirements *
* /hisde/design/design .
* *
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
*ﬁ**t*t***t**tt****ttktt*t*tt**tt*****ﬁ*t**t*t'*t**ﬁt**i**t**itt***tttkt**k****ti***ttt*t/

#include <X1l/Intrinsic.h>
#include <Xm/Text.h>

Widget create_text (instance, parent, text, scrolled, mode, edit_flag)
/* This function returns the return value of the

* XtCreateManagedWidget function call. This will
* be a pointer to a widget.

~/

char *instance, /* The instance name of the widget. It uniquely .
* defines the widget.
*/

text; / The ascii text which will be displayed in the

* text widget.
*/

Widget parent; /* The parent widget to which the text widget will
* be attached.
*/

int mode, /* Indicates whether the widget will be single or

* multiple lines:

*

* XmSINGLE_LINE_EDIT
* XmMULTI_LINE_EDIT

*/
scrolled, /* Indicates whether or not the data can be scrolled.
*/
edit_flag:; /* Indicates whether or not the widget can be edited.
*/
{
Widget widget:; /* Pointer to the created widget.
*/
Arg args({ 3); /* Argument list used to initialize the widget
* resources.
*/
register int count = 0; /* Used to count the number of arguments initialized.

*/

create_text.c

* Initialize the widget text (not a compound string), the line size mode, and the

* edit mode.

*/
XtSetArg (args{ count], XmNvalue, text); count++;
XtSetArg (args[count], XmNeditMode, mode); count++;
XtSetArg (args[count], XmNeditable, edit_flag); count++;

* pased on the (scrolled) flag, create the appropriate type of widget. Next manage
* the widget. Note that the instance name of a scrolled text widget is "instanceSW".

if (scrolled)
widget = XmCreateScrolledText (parent, instance, args, count };

else
widget = XmCreateText (parent, instance, args, count)

XtManageChild (widget):

return (widget)

create_tog.c

/**'tﬁ*'ﬁ**"t***t**t!***t**ttﬁt*ﬁ'***iﬁi****'tt*tti****ﬁtt*ttt**tﬂ’t*t"itﬂ*tttl'!t*"'w*

* MODULE NAME AND FUNCTION (create_toggle)

*

* This function is called to create a toggle button widget. ~

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
tt'tttt*t*t*tt*t*itttt**t*t**ttﬁ*t*ttt*tt*tttt*t'ﬁ**t**tt**tt*itt*tk***t*tt*t***t*t

*

*

*

*

*

*

*

*

ORIGINAL AUTHOR AND IDENTIFICATION: *
*

*

*

1

*

/

*
*
*
*
*
*
L
*
*
*
*
*
*
*
*

#include <X1l1/Intrinsic.h>
#include <Xm/ToggleB.h>

Widget create_toggle (instance, parent, label)
/* This function returns the return value of the

* XtCreateManagedWidget function call. This will
* be a pointer to a widget.

*/

char *instance, /* The instance name of the widget. It uniquely
* defines the widget.
*/

label; / The string which this label widget will display.

*/

Widget parent; /* The parent widget to which the label widget will
* be attached.
*/

{

Arg args|[2]: /* Argument list used to initialize the widget
* resources.
*/

Widget widget; /* Pointer to the created widget.
*/

XmString string; /* Points to the compound string created for the
* label.
*/

register int count = 0; /* Counter set to the number of arguments initialized.
*/

/t
* Convert the label to a compound string and initialize in the argument list.
*/

string = XmStringLtoRCreate (label, XmSTRING_DEFAULT_CHARSET) ;

XtSetArg (args[count], XmNlabelType, XmSTRING); count++;
XtSetArg (args{ count }, XmNlabelString, string): count++;

/t

create_tog.c

Create and manage the widget. Free the space allocated for the compound string.
Return the widget pointer to the calling function.

XtManageChild (widget = ¥xmCreateToggleButton (parent, instance, args, count) }/
XmStringFree (string).

return (widget):

display_msg.c

/t*ittitt*tttiﬁ**tt***tit***t***********ﬁ****it**t***t***t!t*t**t*tt***ttt****t*tttt*ttt*t

* MODULE NAME AND FUNCTION (display message)
~
* This function displays different types of popups for different message types. It dis- ~—
* plays a modal popup which when acknowledged, is automatically removed. This function *
* also calls (h_message). Note that all user interface clients should use this function *
* to present hisde messages. *
* *
* x
* SPECIFICATION DOCUMENTS: .
* *
* /hisde/req/requirements *
* /hisde/design/design N
* *
* *
* QRIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section . *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
ttt**tiit*tt*itt*tiQ*t**tttit****ﬁ*t**iiﬁ**tttt**tttt****it*titt***t**ttt*ittttti*tttttt*/
#include <Xll/Intrinsic.h>
#include <X11/MwmUtil.h>
#include <Xm/MessageB.h>
#include <hisde.h>
extern Widget top:
int display message (type, message)
/* Function returns the return value of h_message
* call.
*/
int type:; /* Type of the message. Used to determine the type
* of popup displayed:
*
* MSG_APPLICATION 1
* MSG_ERROR 2
* MSG_HOST 3
* MSG_INFORMATION 4
* MSG_WARNING s
*/
char *message; /* Message text to actually display.
*/
{
Arg args{ 1]: /* Argument list used to initialize the widget
* resources.
*/
static Widget widget; /* Pointer to the created widget.
*/
XmString string; /* Points to the compound string created for the
* label.
*/
register int count = 0; /* Counts the number of arguments.

*/

display_msg.c

If a popup was already defined, destroy it (it will have been unmanaged, but
* will still exist.

if (widget)
XtDestroyWidget (widget Y2

/*
* Initialize the string to be displayed in the popup.
*/
string = XmStringLtoRCreate (message, XmSTRING_DEFAULT_CHARSET)
XtSetArg (args{ count], XmNmessageString, string); count++;
/*
* pBased on the message type, create the appropriate popup type.
*/
switch (type) |
case MSG_APPLICATION:
case MSG_HOST:
case MSG_INFORMATION:
widget = xmCreateInformationDialog (top, "", args, count)
break:;
case MSG_ERROR:
widget = XmCreateErrorDialog (top, ™", args, count);
break;
case MSG_WARNING:
widget = XmCreateWarningDialog (top, "", args, count);
break:;
defaulct:
break;
}
/t
* Set the modal flag on the popup shell widget.
*/
count = 0;
XtSetArg (args[count], XmNmwmInputMode, MWM_INPUT_APPLICATION_MODAL): count++;
XtSetValues (XtParent (widget), args, count)
/t
* Manage the widget and Free the string used for the compound string.
*/
XtManageChild (widget):
XmStringFree (string):
/*
* Unmanage the CANCEL and HELP push buttons as they have no function.
*/
XtUnmanageChild (XmMessageBoxGetChild (widget, XmDIALOG_CANCEL_BUTTON));
XtUnmanageChild (XmMessageBoxGetChild (widget, XmDIALOG_HELP_BUTTON))
/*
-~ * Call h_message to send the message to the advisory client and return.
*/

return (h_message (type, message))

get_text_wid.c

MODULE NAME AND FUNCTION (get_text_widget)

This function is used to retrieve all text within a text widget.

SPECIFICATICN DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
tittﬁ*!t*t?ﬁ**t**!tt*ttt**t‘t***t*t***tii****tt**ti*ﬁ**tii**tt**ﬁ*'*t*t*t*ttttt**ttt

*
*
*
*
*
*
*
*
*
»*
*
*
*
*
*
*
*
*

#include <X1ll/Intrinsic.h>
#include <Xm/Text.h>

char *get_text_widget (widget)

Widget widget; /* Pointer to the text widget from which the data
* will be retrieved.
*/
{

/* —_

* Retrieve all text from the widget. Note that this is not a compound string.
*/

return (XmTextGetString (widget));

get_txtp_wid.c

/ttt***l*t*tt*t***tt*tt******titt***i***ttﬁ**t***i***i*ti**tt**t*****t*tt**ttttttttttt*:x:
* MODULE NAME AND FUNCTION (get_text_insertion_widget)

*

This function is used to return the position of the cursor in a text widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

x
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
x
kiﬁ***ittttt****it****ﬁ***ttti**t*ttﬁ**ﬁti****ii*ﬁl***t*t*****i*itt**i*t**tkt*tt*t****t*/

»*
*
*
*
*
*
*
*
*
*
*
L]
*
*
*
*

#include <X1l/Intrinsic.h>
#include <Xm/Text.h>

int get_text_insertion_widget (widget)

Widget widget: /* Pointer to the text widget from which the cursor
* position is desired.
*/
{
/*
* Get and return the text cursor position.
*/

return { XmTextGetInsertionPosition (widget))’

get_txts_wid.c

/t*i*tfit*tt**tit*t**ﬁtﬁ*ﬁt*ttt***tt***t*********i’*t***i‘k****t**t*****ﬁ*!t****tt*tt**kit:t

* MODULE NAME AND FUNCTION (get_text_sel widget)
* .

This function is used to retrieve the currently highlighted text within a text widget .

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
tti*'t*ttt*t**ttt**tt***tt*t*lt****t****t't***t*****t*t*t*t***‘kt*t*t*******ttttt*ti*tﬁtk

* ok % X % % ¥ X X ¥ A X X X * *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
/

#include <X1ll/Intrinsic.h>
#include <Xm/Text.h>

char *get_text_sel widget (widget)

Widget widget; /* Pointer to the text widget from which the high-
* lighted text is desired.
*/

(
/ﬁ
* Get and return a pointer to the current text selection.
*/

return (XmTextGetSelection (widget));

init_list.c

/ti'**ii**tﬁ*t*t***t*t****t****i*t***iﬁﬁ*****ﬁt*****i*tt***i***i*tt*'k*****kt**ttt'ktttt*ttt

* MODULE NAME AND FUNCTION (init_list)

*

*
*
®
x
*x
*
*
*
*x
*
*
*
*
*
*
*

This function initializes the entries in an XmList widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division
Southwest Research Institute

******t*****tﬁ********ﬁ*ﬁt**iﬁ**ti*it*****tt***tt*i*****t*t*i*ﬁi******i***t*ti***tt**ttt

#include <X1ll/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xll/Cardinals.h>
#include <Xm/List.h>
#include <hisde.h>

void init_list (widget, data_list)

Widget widget; /* Set to the list widget which will be updated.
*/

char *data_list: /* String containing the logical strings (those
* terminated by newlines) to be placed in the
* list.
*/

char temp(SIZE_HOSTNAME + 1 1:
/* String used to contain the current entry as parsed
* from the (data_list). This value will be converted
* to an XmString and saved in (list). A hostname is
* the largest entry placed in a list.
*
/

Scan the list and create XmStrings for placement in the selection box. Note that
(data_list) includes a number of logical strings terminated by newlines. The
physxcal strings is terminated by a newline. Note that the list is terminated by
a NULL entry.

while (*data_list) {
sscanf (data _list, "%s", temp):
XmListAddItem (widget, XmStringCreateLtoR (temp, XmSTRING_DEFAULT_CHARSET),
0):
data_list += strlen (temp) + 1;

*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
¥
/

ins_text_wid.c

/ttttt**t***tt**t**t*t*t**tk*tttt***i!***tti'***it***t‘kt****tﬂttiﬁ't*tt*tt**t’Rit**t*lttttt*
* MODULE NAME AND FUNCTION (insert_text_widget)

*

This function inserts a new string into a text widget at the current cursor position.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*
*
*
-
=
4
*
*
»*
*
AEAR AR AR R A AR R A A AR R A AR A AR R A KRR AR AR AR AR A AR AR A AR AN AR R AN RN R AR AR KRR AR KRR RARRRAKRRN N kAN

*
*
*
x
*
*
*
*
*
*
*
*
*
*
/

#include <X1ll1/Intrinsic.h>
#include <Xm/Text.h>

void insert_text widget (widget, new_text)

Widget widget:; /* Pointer to the text widget which will be updated
* with the new text.
*/

char *new_text; /* The new string which is to be initialized in the
* text widget.
*/

{

register int pos: /* Set to the position of the cursor in the text
* widget.
*/

/t
* Get the current position of the text cursor and use to add the new text.
*/

pos = XmTextGetInsertionPosition (widget)
XmTextReplace (widget, pos, pos, new_text);

1d_text_wid.c

/ﬁ*.*i***t*t*tt**tittt*ﬁ'*iti*ii'**t*ﬂﬁtt*titﬁt****iﬁﬁ***tttt*iiﬁtﬁl'i'*ﬁt'I'ﬁii'f't.ttt't

* MODULE NAME AND FUNCTION (load_text_widget) *

*
This function initializes a text widget from a file.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier =- Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*
*
*
*
*
*
t 4
*
*
*
L
t*t*i**i*****ﬁ***ttt***i*t***ttt**t*tt*t*t*titt*tﬁ*i***it*t**iit***ti********t********t*/

*
*
*
*
*
*
*
*
~
*
*
*
*
»
*
*

#include <stdio.h>
#include <xX1l/Intrinsic.h>
#include <Xm/Text.h>
#include <hisde.h>

int load_text_widget (file, widget, ptr)
/* This function reads a file and loads the data into

* a text widget.
*

* (0) - Successful operation

* (-1) - Error occurred.
*/

char *file; /* Name of the file to be initialized.
*/

Widget widget; /* Text widget to be initialized with file data.
x/

int ptr; /* Pointer into the text widget where the new text
* will go.
*/

{

FILE *fp; /* File pointer used to open and access the user’s
* history file.
*/

register int i=20, /* Pointer used to maintain position in the (string)
* puffer when initializing command list.
*/

c; /* Used to contain last character read (for EOF

* checking) .
*/

char string(101]; /* Buffer used to read in the command list data
* (100 bytes at a time).
*/

—- /*

* Open the file. If this fails, log and error and return.
*/

1d_text_wid.c

if ((£p = fopen (file, "r")) == NULL)
return (-1);
/ « v
* 1If starting pointer is -1, clear the text widget first.
*/
if (ptr == -1) {
clear_text_widget (widget);
ptr = 0;
}
/*
* Read data from the file. Read 100 bytes at a time and add to the text widget’s
* string.
*/
while (ptr != EOF) {
while (i < 100 && (string[i] = ¢ = getc (fp)) != EQF)
i++;
string[i] = NULL:
XmTextReplace (widget, ptr, ptr, string);
if (¢ == EOF)
ptr = EOF;
else |
ptr += i;
i=20;
}
}
/ *
* Close the file. If an error Occurs, output an error to the system message ~~——
* client.
*/

if (fclose (fp) !'= 0)
return (-1);

return (0);

upd_text_wid.c

/t**t***‘**ﬁ*'ﬁi'**tttt**it**tt*itt**it*******tt*t*;iitti*i****ttttitttit**t*it‘.*t!*itttttt‘t
* MODULE NAME AND FUNCTION (update_text_widget)

*

This function is used to update all text within a text widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
ﬁ**t*iﬁ***iﬁ**ﬁﬁ*'*t*tt**ﬁﬁit*****t*t**i****ti*ti****it‘.t*i*t**ttt*******‘k**t*tﬂtit*tttt/

*
*
*
*
*
4
*
*
*
*
*
*
*
»
*
*

#include <X11/Intrinsic.h>
#include <Xm/Text.h>

void update_text_widget (widget, new_text)

Widget widget; /* Pointer to the text widget which will be updated.
*/
char *new_text; /* The new string which is to be initialized in the
* text widget.
*/
{
/*
* Replace the old text with the new text.
*/

XmTextSetString (widget, new_text }:

Motif Research ATTACHMENTS

e s A

ATTACHMENT 2 - Client
Code

“
Southwest Research Institute Page § Workstation Executives

##l#0i##0###!#########0#0#########i#####0#####l###l##i#####i!###l###i!##li###l############

Makefile for HISDE user interface client h_advisory.
#################i##i#i####i##

#

Define the target which this file is to create.
#

TARGET = h_advisory

#

Initialize include and library search paths to include current directory and the
HISDE directories. Note that the library path also includes the user interface

library.

¥

BINDIR = /hisde/bin

INCDIR = /hisde/src/include
INCDIRS = -I. =-I$(INCDIR)

#

¢ Define the libraries to search. This includes the HISDE library, the local user
interface library, and all required X libraries.

#
LIBRARIES = -lui -lhisde -1Xm -1Xt -1X11
#
Define the compiler and linker flags.
#
CFLAGS = -0 $(INCDIRS)
LDFLAGS = -0 $(EXTRAFLAGS)
#
Define all objects which make up this target.
#
OBJS =\
cbr_exit_com.o\
tmr_stat_upd.o\
h_adv_bullet.o\
h_adv_msg.o\
h_advisory.o
#
Define all header files required.
#
HDRS =\
$ (INCDIR) /h_advisory.h\
$ (INCDIR) /h_advisory.bit\
$ (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)

$ (TARGET) : $(OBJS)
$(CC) -o $@ $(OBJS) $(LIBRARIES) $(LDFLAGS)
strip $(TARGET)
mv $ (TARGET) $(BINDIR)

./h_advisory/Makefile

$ (OBJS) : $ (HDRS)

./h__advisory/h_fac_)vi ory.c 1

/iitt*iﬁ***ﬁ*i**ﬁ*ttt*i*titt‘iiiﬁ*iitiﬁttﬁtt*t*ttﬁtiitﬁt*iﬁﬁﬁiﬁ't*tﬁ*iiﬁﬁtt.'tii'tlttﬁttti

» MODULE NAME AND FUNCTION: (h_advisory)

The h advisory client provides the user with the advisory window for the HISDE
systeﬁ. Ir allows the user to view received messages from the system,

host, and other applications. There are five types of messages which may be
received by this client. They are:

1) application messages,

2) error messages,

3) host messages,

4) informative messages, and
5) warning messages.

This client displays the received messages in a scrolling window and
keeps a counter for each message type indicating the number of messages
which have been displayed. This counter is displayed above the scroll window.

There is alsoc a command button for each message type, which allows the user
to turn a filter on and off for each message type. If the user selects

a command button, turning the filter on, any messages received of that

type are ignored. (That is, they are written to the log file, but not
displayed in the scrolling window.) If the user selects the command button
again, the filter is turned off, thus allowing messages of that type

to be displayed again. The default for all filters will be 'OFF’, but

the user is allowed to run h_advisory with parameters to initialize
particular message type filters as TON’. Whenever the state of a filter

is changed, the command button’s background and foreground colors

are reversed to indicate the change.

This client uses a timer routine to check the message queue for new
messages. The default timer value is 2 seconds. If the user wants
to change the interval, he/she may do so in the command line when
running advisory by using the /-interval’ option.

The log files created by this routine are the host bulletin log file
which contains the host messages received in the message queue and
the message log file which contains all of the messages received in
the message queue. These files may be viewed by running h_bulletin
for the host bulletin log and h_msg_look for the message log.

DESCRIPTION OF MAIN FUNCTION:

This is the main driver for the h_advisory client of the HISDE system. It
initializes the X Windows system and then creates the widgets

necesssary for the h_advisory window. The window created contains

a label for the advisory window, an exit command button, a command button to
turn each message type’s filter on or off, labels and text for each type’s
unacknowledged message count, and a scrolling window for the display of
messages.

This client will display the window and then enter the XtMainLoop routine
and periodically check for messages. It will also handle the user selecting
a command button. If a filter button is selected the associated command
function will be executed to switch the filter’s state and reverse the
button’s color. The functions associated with each message type are:

ll"»‘lill't&l&tl-l&llllhl'ﬁ!&ﬁ**tll*“ll“‘""*"l""‘*“!I‘Illl

‘l"‘*ﬁl<*l‘tit*&*iltt**ﬁl'l’"tl‘#t*}*l"“l“!‘llt!lt!*ltl‘!'l'l

Application messages - appl_command (),
Error messages - err_command(),
Host messages - host_command{),
Informative messages - info_command(), and

* Warning messages - warn_command() .

‘llﬁt“‘l‘*ll&!tﬁliitil*i-*ti"‘*l'ltl*!l*'l*l'ltll}&l'}t!ll‘l’*lll’ﬁ

./h_advisory/h_advisory.c

If the exit button is selected, the exit_command() function is executed
and h_advisory is terminated.

- .

In order to periodically check the message queue for messages, a timer
is started before entering XtMainLoop. When this timer expires,

the update_status() function is executed. This function will retrieve
any messages from the queue, check the message types and display any
messages whose filter is not turned on. Once all messages have been
retrieved from the queue, the timer is started again. This will
continue until the user selects the exit button.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

EXECUTION SEQUENCE:
h_advisory [-appl]) (-err]) (-host] [-info] (-warn] [-interval seconds)

In addition to the X Windows options which may be used when
running h_advisory, the following options are defined:

-appl = turns the filter on for application messages.

-err = turns the filter on for error messages.

-host - turns the filter on for host messages.

~info - turns the filter on for the informative messages.

-warn = turns the filte on for warning messages.

-interval (seconds] - indicates the interval, in seconds, desired
by the user.

Qll&llll‘llil"llﬁlllllti'

(

FILES USED AND APPLICATION DEFINED FORMATS:

/hisde/.msg_log - This file is used by the h_advisory client to log all
messages received in the message queue. It is set up
as a circular file with a maximum number of messages.
Because it is a circular file, each message written
to this file must be of the same length. Therefore,
each message is written to a blank message buffer of
the maximum message size possible. 1In order to
maintain this file, the last position written to in the
file each time a message is added is written at the
beginning of the file. The maximum sizes for this
file are defined in the h_logfiles.h header file.

struct .msg log {
char (POSITION OFFSET] last_position:;
char [MAX _NUM _MSG * MAX MESSAGE] messages;

}

/hisde/.host_log - This file is used by the h_advisory client to log all
host messages received in the message queue. It is set
up as a circular file with a maximum number of messages.
Because it is a circular file, each message written
to this file must be of the same length. Therefore, —
each message plus a newline are written to a blank
message buffer of the maximum message size possible.
The newline is necessary for the display of these
message in the h_bulletin client. 1In order to
maintain this file, the last position written to in the

‘llt'l'!'l&l&'ltﬁ'&l“""'

* ¥ * * »

./h_advisory/h _advisory.c

file each time a message is added is written at the

beginning of the file. The maximum sizes for this
file are defined in the h_logfiles.h header file.
struct .host_log |
char [POSITION_OFFSET] last_position;
char [MAX_NUM_HOST * MAX_MESSAGE] messages;

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
t*titttiﬁi*tt*i****i****itl*t**ittt***i*i**ﬁiittﬁ'l'**tit**'liiti*iiﬁ*t*t*t*ﬁ***ttt*t**t***

*
*
*
*
*
*
*
4
*
*
]
*
&
*
*
*
/

#include <stdio.h>

#include <X1l1/IntrinsicP.h>
#include <X11/StringDefs.h>
#include <Xll/Cardinals.h>
#include <X11/Shell.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <fcntl.h>

#include <hisde.h>

#include <h_user_inter.h>
#include <h_advisory.h>
#include <h_advisory.bit>
#include <h_logfiles.h>

/t
* peclare all external widgets to be used by the h_advisory application.
* This is required for their use in the callback and action routines.

*/

Widget top, m_main, mb_main, mp_file, aform, widget,
appl_txt, appl_tog,
err_txt, err_tog,
host_txt, host_tog,
info_txt, info_tog,
warn_txt, warn_tog,
msg_scrll;

/t
* pDeclare the filter flags and counters for each message type.
*/

int mtype_counters|[NUMBER_MSG_TYPES];

/*

* DpDeclare the current position values in the host bulletin log and the message
* log.

*/

long last_position,
log_position;

/*
* Dpeclare the interval to be used when checking the message queue for

./h_advisory/h_advisory.c

* messages. It’s default is 2 seconds. This may be changed in the
command line with the -interval parameter. —
*/

unsigned timer_interval = DEFAULT_INTERVAL;

long
/t
* Declare the callback procedures to be executd when a command button is selected.

*/

extern XtCallbackProc exit_command():;

/*
* Declare the callback procedure to be executed when the timer value expires.
*/

extern XtTimerCallbackProc update_status();

main (argc, arxgv)
int argce;
char **argv;
{
/*
* Flags indicating whether the user requested any message type filters to
* be initially set to 'off’. This can be indicated in the command line by
* the -appl, -err, -host, -info, and -warn options.
*/
static Boolean f£ill, /* Application message. */
£i12, /* Error message. */ ~—
£i13, /* Host massage. */
£fil4, /* Informative message. */
£i15; /* Warning message. */
/%

* Declare the application-specific resources allowed by this client. The
* resources which may be set are the message type filters and the interval desired

* for checking the message queue.

=

*/

static XrmOptionDescRec options[] = {

{"-appl"”, "AAppl"™, Xrmopt ionNoArg, "True™},
("-erc", "AErr", XrmoptionNoArg, "True®},
{"-host"”, "AHost", XrmoptionNoArg, "True"},
{"=-info", "AInfo", XrmoptionNoArg, “"True"},
{"~-warn®, "AWarn®, XrmoptionNoArg, "True”},
{"-interval"®, "Interval®”, XrmoptionSepArg, NULL }

b

static XtResource resources[) = {

{ "aappl”, "AAppl", XtRBoolean, sizeof (Boolean), (Cardinal)&fill,
XtRString, “False" },

{ "aerr”, "AErr"”, XtRBoolean, sizeof (Boolean), (Cardinal)&fil?2,
XtRString, "False" },

{ "ahost", "AHost", XtRBoolean, sizeof (Boolean), (Cardinal)&fil3,
XtRString, "False” },

{ "ainfo", "AInfo", XtRBoolean, sizeof (Boolean), (Cardinal)&fild,
XtRString, “"False" },

{ "awarn", "AWarn"™, XtRBoolean, sizecof (Boolean), (Cardinal)s&fils,
XtRString, "False” },

{ "interval®, "Interval", XtRInt, sizeof (int), (Cardinal) &étimer_interval,
XtRInt, (caddr_t)é&timer interval }

J/h_advisory/h_advisory.c

}:

* Declare the callback list array to be used when creating command widgets.
This array will contain the routines to be executed when the associated
* command button is selected.

*/
static XtCallbackRec command callbacks(] = {
{ (XtCallbackProc) NULL, (caddr_t) NULL },
{ (XxtCallbackProc) NULL, (caddr_t) NULL '}
}:
Arg icon_arg, /* Argument used to initialize the icon.
*/
args{ 1]; /* Argument list used to initialize various
* widget resources.
*/
XtIntervalld id: /* The ID necessary for identifying the timer.
*/
int fd, /* The file descriptor of the opened log files.
*/
i; /* Used to step through the array of message
* counters.
*/
char position [POSITION_OFFSET];

/* Character string used to read the last
* the last position written to value from the

* log files.
—_ */
Iz
* 7Initialize the message counters to zero.
*/
for (i = 0; L < NUMBER_MSG_TYPES; i++)
mtype_counters{ i] = 0;
/*
*+ Initialize the file positions for the message and host bulletin log files.
* QOpen the files, read the position value, convert the value to an integer,
* and assign it to the appropriate external variable for each file.
*+ If there is not a log file, assign the position value to be zero.
*/
if ((fd = open (HISDE_HOST_LOG, O_RDONLY)) <= NULL) |
last_position = ZERO;
} else {
if (read (fd, position, POSITION_QFFSET) != POSITION_OFFSET) {
fprintf (stderr, "h_advisory: Cannot read host bulletin file position.™):
close (£fd):
exit (-1);
} else (
last_position = atoi (position)i
close (fd):
}
}
— if ((fd = open (HISDE_MSG_LOG, O_RDONLY)) <= NULL) ({

log_position = ZERO;
} else {
if (read (£d4, position, POSITION_OFFSET) != POSITION_OFFSET) |
fprintf (stderr, "h_advisory: Cannot read message log file position.”):

* *

/*
*/

/*
*/

/‘k
*/

./h_advisory/h_advisory.c

close (fd):
exit (-1);
} else | —r

log_position = atoi (position);
close (fd):

Initialize the X Windows system and create the top level widget for the advisory
screen.

top = XtInitialize (ADVISORY_SHELL, ADVISORY_CLASS, options, XtNumber (options),
&argc, argv):

If there were invalid arguments on the command line which could not be parsed,
call the function, bad syntax, to display the correct syntax and exit from
the client.

if (arge > 1)
bad_ syntax (
"h_advisory [-interval time] {-appl] [-err] [-host] [-info] [~-warn]®);

Initialize the icon bitmap for this client.

XtSetArg (icon_arg, XtNiconPixmap,
XCreateBitmapFromData (XtDisplay(top), XtScreen(top) -> root, S
h_advisory bits, h_advisory width, h_advisory_height));

XtSetValues (top, &icon_arg, ONE);

Retrieve any application-specific resources which were initialized previously or
in the command line. This includes both initialization of message type filters
and the message queue read interval. Multiply the specified interval by 1000 to
get it into milliseconds.

XtGetApplicationResources (top, (caddr_t)NULL, resources, XtNumber (resources),
NULL, 2ERQO):
timer_interval = timer_ interval * 1000;

Create the main window widget and the menu bar which will contain all commands.

m main = XmCreateMainWindow (top, "%, NULL, 0):;
XtManageChild (m_main);

mb_main = XmCreateMenuBar (m_main, "", NULL, 0);
XtManageChild (mb_main);

Create pulldown for file commands.

command_callbacks{ 0].callback = (XtCallbackProc)exit_command;
mp_file = XmCreatePulldownMenu (mb_main, "“, NULL, 0);:
Ccreate cascade (""~, mb_main, mp_file, LABEL FILE)

/*
*/

* % ¥ ¥ ¥ %

*» * *

.J/h_advisory/h_advisory.c
create_command ("", mp_file, LABEL_EXIT, command callbacks);
Create the help cascade.

widget = create_cascade ("", mb_main, NULL, LABEL_HELP);
XtSetArg (args(0], XmNmenuHelpWidget, widget);
XtSetValues (mb_main, args, 1);

Create the HISDE Advisory window which will contain command buttons to filter
each message type, text widgets to display the unacknowledged message counts
for each type, and a scrolling window for the display of received messages.

aform = create_form ("", m_main);

The text widgets will contain strings which have a message type label and the
message counter. The counter is initialized to zero.

An assignment to the command callback list is made to indicate which callback
function is to be called when the created button is selected.

appl_tog = create_toggle (W_TG_APPL, aform, LABEL_APPL);
appl_txt = cCreate_text (W_T_APPL, aform, "O", 0, XmSINGLE_LINE_EDIT, 0):
err_tog = create_toggle (W_TG_ERR, aform, LABEL_ERR):
err_txt = create_text { W_T_ERR, aform, "0", 0, XmSINGLE_LINE_EDIT, 0):

host_tog = create_toggle (W_TG_HOST, aform, LABEL_HOST);
host_txt = create_text (W_T_HOST, aform, "0", 0, XmSINGLE_LINE_EDIT, 0);

info_tog = create_toggle (W_TG_INFO, aform, LABEL_INFO);
info_txt = create_text (W_T_INFO, aform, "0", 0, XmSINGLE_LINE_EDIT, 0);

warn_tog = create_toggle (W_TG_WARN, aform, LABEL WARN);
warn_txt = create_text (W_T_WARN, aform, "0", 0, XmSINGLE_LINE_EDIT, 0);

Create the text widget to be used as the message window. It is created
with a vertical scrollbar to allow the user to page through displayed
messages.

msg_scrll = create_text (MSG_TEXT_SW, aform, "", 1, XmMULTI_LINE_EDIT, 0);

Initialize the first iteration of the timer. This will cause the update_status
callback routine to be executed. This routine will reset the timer each time
it completes its function.

id = XtAddTimeOut (timer interval, update_status, NULL):

Call XtRealizeWidget on the top level widget to display the h_advisory window.
Next, enter the XtMainlLoop routine to process events, timers, and actions.
This client will be terminated in a callback routine when the user has
requested to exit the advisory window.

XtRealizeWidget (top):

./h_advisory/h_advisory.c

/* L
* If a message type filter has been selected to be set, turn the filter g
* on and reverse the command button’s colors.

*/
i€ (£il1)
XmToggleButtonSetState (appl tog, TRUE, FALSE);
if (£1i12)
XmToggleButtonSetState (err_tog, TRUE, FALSE);
if (£413)
XmToggleButtonSetState (host_tog, TRUE, FALSE):
if (£il4)
XmToggleButtonSetState (info_tog, TRUE, FALSE);
if (£i15)
XmToggleButtonSetState (warn_tog, TRUE, FALSE);
/t

* Enter the Xtoolkit main loop to coordinate processing of all widget events.
This locp is terminated when the user selects the exit command button and
* the associated callback procedure is executed to terminate this client.

*/

»

XtMainLoop ():

./h_advisory/h_adv_bullet.c N

/***i*******ﬁ***********************t******t
* MODULE NAME AND FUNCTION: (update_host_bulletin)

*

*
*
*
*
*
*
*
*x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This function will open the host bulletin log file and add the most
recent host message into the next available position in the file.
If the file has exceeded its maximum size, the new message will be
written over the oldest message in the file. 1In order to maintain
this circular file, the last position written to in the file is
stored in the first twenty bytes of the file. This position value
indicates where the next message should be written on the next pass
through this function.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division
Southwest Research Institute

******************************t**t******tt**i***i********t*******'k*****************t****/

#include <stdio.h>
#include <fcntl.h>
#include <hisde.h>
#include <h_advisory.h>
#include <h_logfiles.h>

update_host_bulletin (new_record, last_position)

/*
*/

/*
*/

/*
*/

* *

char *new_record; /* Specifies the new host message to be *x/
/* added to the file. */
long last_position; /* Specifies the last position written to */
/* in the file. */

Declare the buffers used to write the last position value and the messages
to the host bulletin log file.

char buffer [MAX MESSAGE],
position[POSITION OFFSET];

Declare the values needed to open the host bulletin log file.
int open{), £d;

Declare the value to be used to step through the output buffers.
register int i;

Initialize the message output buffer to blanks.

for (i = 0; 1 < MAX MESSAGE; i++)
buffer(i] = BLANK;

Open the host bulletin log file. If the file is not already created, create it
with the appropriate protections.

~
* % %

»*
~

* % % A ¥ % % *

*

*/

/*
*/

* % X X * % %

* %

./h_advisory/h_adv_bullet.c

If the open is not successful, display a message and exit h_advisory.

if ((£d = open (HISDE_HOST_LOG, O _WRONLY | O_CREAT, 0666)) <= NULL) {
fprintf (stderr, "h_advisory: Cannot open host bulletin file"); ~
exit (-1);

}

Build a constant size buffer for writing the passed message to the host bulletin
log file.

sprintf (buffer, "%s", new_record);

Determine where the message should be written in the log file. 1If the
last position written to in this file was at the end of the file or

if it is the first message being written to the file, set the file
position to be just passt the bytes allotted for the file position value.
Then set the last-position-written-to value to be the size of the previous
position value plus the size of the new message.

if ((last_position >= MAX_HOST LOG) || (last_position == 0)) {
lseek (fd, POSITION_OFFSET, 0)
last_position = MAX MESSAGE + POSITION_OFFSET;

Otherwise, set the file position to the last file position and increase the
last position written to by the size of the new message.

} else {
lseek (f£d, last_position, 0);
last_position += MAX MESSAGE;

}

Write the new message to the current file position. If an errror occurs, —
display a message and exit the h_advisory client.

if (write (fd, buffer, MAX MESSAGE) != MAX MESSAGE) {
fprintf (stderr,
"h_advisory: Cannot write to host bulletin file.");
close (fd);
exit (-1);

}

Set the position output buffer to blanks.

for (i = 0; i < POSITION OFFSET; i++)
position[i] = BLANK;

Assign the new position value to the output buffer and write it
to the beginning of the file.

If an error occurs, display a message, close the file, and exit the
h_advisory client.

sprintf (position, "%d", last_position);
lseek (£d, 0L, 0)
if (write (fd, position, POSITION_QFFSET) = POSITION_OFFSET)
fprintf (stderr,
"h_advisory: Cannot write to host bulletin file.");
close (£fd);
exit (-1);

} i
e
If the new message was successfully written to the host bulletin log

file, close the file and return the last position written to value
to the calling routine for use on future calls to update this file.

./h_advisory/h_adv_bulletfc

*/
close (fd):
return (last_position);

./h_advisory/tmr_stat_upd.c

/t****t**t******i**tt*****t*t***********t*****i*tt********i********t*********************i

* MODULE NAME AND FUNCTION: update_status()

This function is a timer callback procedure which is executed when the
timer interval expires. This function executes a loop until there
are no longer any messages waiting in the message queue.

Within this loop, a message and message type are received. As each
message is received it is written to the message log file (and the
host bulletin log file, if it is a host message). If the filter

for the received message type is set, processing is stopped on this
message and the next message is retrieved. Otherwise, a message counter
is incremented to indicate the number of unacknowledged messages which
have been received for this message type. Next, the text containing
the message counter is updated by calling update_ text_widget

for the appropriate message type’s text widget. When the change has
been completed, the new counter and label are copied over the old

text and a flag is set to indicate that there is a new message to

be displayed.

If a new message is to be added to the list of displayed messages,

a new list of messages is allocated and created by adding the new
message to the end of the old list, old message. If this is accomplished
without erroxr, the new list, new_message, is copied over the old_list,
old_message. This process is done until there are no more

messages waiting in the message queue.

When all messages have been retrieved from the queue and processed,
the change flag is checked. If this flag is set then the size of
the new list is checked. If this size exceeds the current size

of the text widget, list_size, then the widget is destroyed and
recreated with a text size that has been incremented to accomodate
the new messages. Otherwise, the new messages are inserted at the
end of the text currently displayed in the scroll window.

Once the widget has been recreated or updated, the

input cursor is set at the beginning of the most recently added
message by calling XtTextSetInsertionPoint using the size of the
previously displayed list of messages as the marker.

4 llll&‘ll‘!ll*tl&l}il&*"l’lﬂ"(
(\

Finally, update_status reinitializes the timer value. This will cause
update_status to be called continually, at the specified interval, to
check the message queue for messages.

SPECIFICATION DOCUMENTS:
/hisde/req/requirements
/hisde/design/design

EXTERNAL DATA USED: ('I’ - Input ‘O’ - Qutput ‘I/O’' - Input/Output)

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
******t**t****t**t*t*********t*********t*******t**/v -

“-'l»&t&"‘l’.‘-&!l*#*ll—**l&**&y

#include <stdio.h>
#include <X1ll/Intrinsic.h>

J/h_advisory/tmr_stat_upd.c

#include <X11/StringDefs.h>
#include <X1l1l/Cardinals.h>
#include <Xm/Text.h>
#include <Xm/ToggleB.h>
#include <hisde.h>

#include <h_user_inter.h>
#include <h_advisory.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

/-k
* peclare the current position values in the host bulletin log and the message
* log.
*/
extern long last_position,
log_position;
/*

* Declare the timer interval value for use in starting the timer back up.
*/

extern long timer_interval:

/t
* Declare the message counter array and filters so they may be checked and
* updated.
*/

extern int mtype_counters{ 1;

/*

*» Declare the widgets which are accessed when the message counters and
* messages are updated.
*/

extern Widget appl_txt, appl_tog,
err_txt, err_tog,
host_txt, host_tog,
info_txt, info_tog,
warn_txt, warn_tog,
msg_scrll;

extern char *malloc ()

XtTimerCallbackProc update_status client_data, id)

caddr_t client_data; /* Specifies the client date that was registered
* registered for this procedure in XtAddTimeOut.
*/
XtIntervalld *id; /* Specifies the ID returned from the corresponding
* corresponding XtAddTimeOut call.
*/
{
char *temp_message, /* Will point to complete formatted message.
*/
message_type, / Will point to text message type.
*/
old message; / Will point to existing message text. It is

* needed to compute length.

/*

*/

/%
*/

/*

*

./h__advisory/tmr_stat_upd.c

*/
int message_size = 0, /* Set to the current length of the message list.
*/ ___'
updates = FALSE, /* Flag which indicates if 2 message was added to
* the 1list.
*/
size; /* Specifies the size of the message to displayed.
*/

struct advisory struct message;
key_t msg_queue;

Get the contents and length of the current message list.

old message = get_text_ widget (msg_scrll);
message_size = strlen (old_message);
XtFree (old_message);

Enter a loop to retrieve all messages that have been received since the last
interval check.

msg_queue = H_ADV_MESSAGE_KEY + (key_t)h_get_tty():

while (msgrcv (msgget (msg_queue, 0), amessage, MAX MESSAGE_LENGTH,
0L, IPC_NOWAIT) != -1)
{ T

updates = FALSE;
If a message is recieved, udpate the appropriate message count.

if (message.adv_mtype == MSG_APPLICATION) {

message_type = APPL_TYPE;

updates = update_label (message.adv_mtype, appl_txt, appl _tog):;
} else if message.adv_mtype == MSG_ERROR) {

message_type = ERR TYPE;

updates = update_label (message.adv_mtype, err_ txt, err _tog);
} else if (message.adv_mtype == MSG_HOST) {

message_type = HOST TYPE;

updates = update_label (message.adv_mtype, host_txt, host_tog);

if ((last_position = update_host_bulletin (message.adv_mtext,

last_position)) < 0) ¢
fprintf (stderr, "h_advisory: Cannot log host bulletin”)i
exit (-1);

}
} else if (message.adv_mtype == MSG_INFORMATION) ({

message_type = INFO_TYPE;

updates = update_label (message.adv_mtype, info_txt, info_tog);
} else if (message.adv mtype == MSG_WARNING) {

message_type = WARN TYPE;

updates = update_label (message.adv_mtype, warn_txt, warn_tog);
} else

fprintf (stderr, "h_advisory: Invalid message type received: \n%s\n",

message.adv_mtext);

Allocate storage for the received message, its type, and its type name.

./h_advisory/tmr_‘stat_upd.c‘ |

* Nexﬁ} create the full message in the temp message buffer.

*/
size = strlen (message.adv_mtext) + MESSAGE_LEADIN_SIZE;
if ((temp_message = malloc ((unsigned)size)) == NULL) |
fprintf (stderr, "Cannot allocate space to build current message"™):;
exit (-1);
}
sprintf (temp_message, "$s (%d) %$s%s\n", MESSAGE_LEADIN,
message.adv_mtype, message_type, message.adv_mtext)
/*

* Call update _message_log to add the full message to the message log file.
*/

if ((log_position = update_message log (temp_message, log_position)) < 0) {
fprintf (stderr, "h_advisory: Cannot update log file with new message");
exit (-1);
}
/*
* Append the message to the existing list.
*/
if (updates) {
¥mTextSetInsertionPosition (msg_scrll, message_size);
insert_text_widget (msg_scrll, temp_message);
message_size += strlen (temp_message);
}
}
/*
* when the message gqueue has been emptied and all updates have been made, reset
* the timer so that this routine will be called continually until the user
* gelects to exit the h_advisory client.
*/

*id = XtAddTimeOut (timer_interval, update_status, NULL);

/****ﬁ*********t***********tt**********************ti***t*t****tt***************t*********

* MODULE NAME AND FUNCTION: update_label

*
This function will, if the appropriate filter is off, update the appropriate
message count. In this instance, it will return TRUE.

mtype_counters [NUMBER_MSG_TYPES] (int) (I/0) -
An array of integers containing the unacknowledged
message counts for each message type. Each type’s

counter is accessed by its message type number.
***********i*******t***t***tt**************t**tt****t*******i*******t*****tt*t*t******t*

*
»
*
*
*
*
EXTERNAL DATA USED: (I’ - Input ‘O’ - Output ‘I/0’ - Input/Output) *
*
*
*
*
*
/

*
*
*
*
*
*
*
*
*
*
*

update_label (index, text_widget, toggle_widget)

int index; /* Specifies the message type index.
*/
Widget text_widget, /* Text widget which will be updated.

*/

J/h_advisory/tmr_stat_upd.c

toggle_widget; /* Toggle widget which determines the state of the

* filter.
*/
{ —
char temp(10 }: /* Buffer used to format the new message count.
*/

/*
* If the filter is disabled, increment the counter and update the text widget.
*/

if (¥mToggleButtonGetState (toggle widget) == FALSE) {
++mtype counters(index - 1];
sprintf (temp, "%d", mtype counters[index - 1]);
update_text_widget (text_widget, temp):
return (TRUE);

/*
* Otherwise, return FALSE to indicate that the filter is enabled.
*/

} else
return (FALSE);

./h_‘_advisory/h_adv_msg.c“_v o 1

/**i******i**i**t**************t***t**i****t*t*ﬁ****ﬁ***iﬁﬁ***i*i**ﬂ**************it*t****

* MODULE NAME AND FUNCTION: (update_message_log)

*

*
*
*
*
*
*
*
*
*
*
*x
*
*
*
*
*
*
*
*
*
*
*

This function will open the message log file and add the most recent
message into the next available position in the file. If the file has
exceeded its maximum size, the new message will be written over the
oldest message in the file. In order to maintain this circular file,
the last position written to in the file is stored in the first twenty
bytes of the file. This position value indicates where the next message
should be written on the next pass through this function.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division
Southwest Research Institute

*********tﬁ**t**********i*************i*******ﬁ*****i***t**i***t******i********t**'k*****/

#include <stdio.h>
#include <fecntl.h>
#include <hisde.h>
#include <h_advisory.h>
#include <h_logfiles.h>

update_message_log (new_record, log_position)

char *new_record; /* Specifies the new message to be */
/* added to the file. */
long log_position; /* Specifies the last position *x/
/* written to in the file. */
{
/* Define the buffers used to write the last position value and the messages
* to the message log file.
*/
char buffer [MAX_MESSAGE],
position[POSITION_QFFSET]:
/*
* pefine the values needed to open the message log file.
*/
int open(), fd;
/i
* Declare the value to be used to step through the output buffers.
*/
register int i;
/%
* TInitialize the message output buffer to blanks.
*/
for (i = 0; i < MAX MESSAGE; i++)
buffer[i] = BLANK;
/*
* Open the message log file. 1If the file is not already created, create it
*

* %

with the appropriate protections.

If the open is not successful, display a message and exit h_advisory.

./h_advisory/h_adv_msg.c

if ((£d = open { HISDE_MSG_LOG, O_WRONLY | O_CREAT, 0666)) <= NULL) ({
fprintf (stderr, "h_advisory: Cannot open message log file");

exit (-1);

} e
/*
* Build a constant size buffer for writing the passed message to the message

log file.
*/

sprintf (buffer, "%s", new_record);
/

*

* Determine where the message should be written in the log file. If the

* last position written to in this file was at the end of the file or

* if it is the first message being written to the file, set the file

* position to be just past the bytes allotted for the file position value.

* Then set the last-position-written-to value to be the size of the previous
* position value plus the size of the new message.

*/
if ((log_position >= MAX MSG_LOG) || (log_position == 0)) |
lseek (f4, POSITION_OFFSET, 0);
log_position = MAX MESSAGE + POSITION_OFFSET;
/*
* Otherwise, set the file position to the last file position and increase the

* last position written to by the size of the new message.

*/
} else {
lseek (fd, log_position, 0);
log_position += MAX MESSAGE;
}
/*

* Write the new message to the current file position. If an error occurs,
* display a message and exit the h_advisory client.
*/ R
if (write (fd, buffer, MAX MESSAGE) != MAX MESSAGE) {
fprintf (stderr,
"h_advisory: Cannot write to message log file.");
close (£d);

exit (-1);
}
/*
* Set the position output buffer to blanks.
*/
for (i = 0; i < POSITION OFFSET; i++)
position{i] = BLANK;
/*
* Assign the new position value to the output buffer and write it
* to the beginning of the file.
*
* If an error occurs, display a message, close the file, and exit the
* h_advisory client.
*/
sprintf (position, "%d", log position);
lseek (£d4, 0L, 0);
if (write [fd, position, POSITION_OFFSET) = POSITION_OFFSET) {
fprintf (stderr,
"h_advisory: Cannot write to message log file.");
close (£d });
exit (-1);
}
/*
* If the new message was successfully written to the message log —

* file, close the file and return the last-position-written-to value
* to the calling routine for use on future calls to update this file.

close (£d);

J/h_advisory/h_adv_msg.c

return (log_position):

./h_advisory/cbr_exit_com.c

bbb LA AL e L e Ly R 2 N B 2 R g
* MODULE NAME AND FUNCTION: exit_command () *

The exit_command function is a callback procedure attached to the exit P
command button of the h_advisory client. This function causes the client
to terminate naturally when the user selects the exit button.

/hisde/req/requirements

*

*

*

*

*

* SPECIFICATION DOCUMENTS:
*

*

*

* /hisde/design/design
*

top (Widget) (I) - The top level form widget for the h_advisory client.

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
*tt****tt********t*t**t***t***********ttt*******t**tt*******tt********t**t**********t***

*
*
*
*
*
*
*
*
*
*
* *
* EXTERNAL DATA USED: (’I’ - Input ‘O’ - Output ‘I/0’ - Input/Output) *
* *
* %
* *
* -
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* N
* *
* *
* *
* *
* /

#include <X11/Intrinsic.h>

/*
* Declare the top level widget.
*/

extern Widget top:;

XtCallbackProc exit_command (widget, closure, calldata)

Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter is not
* used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client. This parameter is
* is not used by this function.

*/
{
/*
* Remove the top level widget and then close the h_advisory display.
*/
XtUnmapWidget (top)
XCloseDisplay (XtDisplay (top)):
/* e

* Exit the h_advisory client with a zero.

*/

./h_advisory/cbr_exit_com.c n

exit (0)

./h_bulletin/Makefile ' 1

######################################f#####################################*#############
Makefile for HISDE user interface client h_bulletin.
##*###\)

#

Define the target which this file is to create.
#

TARGET = h_bulletin

#

Initialize include and library search paths to include current directory and the
HISDE directories. Note that the library path also includes the user interface

library.

#

BINDIR = /hisde/bin

INCDIR = /hisde/src/include
INCDIRS = -I, -I$(INCDIR)

#

Define the libraries to search. This includes the HISDE library, the local user
interface library, and all required X libraries.

#
LIBRARIES = -lui -lhisde -1Xm -1Xt -1X11
#
Define the compiler and linker flags.
#
CFLAGS = -0 $(INCDIRS) S
LDFLAGS = -0 $(EXTRAFLAGS)
#
Define all objects which make up this target.
#
OBJS =\
tmr_bul upd.o\
cbr_exit_com.o\
update_win.o\
h_bulletin.o
#
Define all header files required.
¥
HDRS =\
$ (INCDIR) /h_bulletin.h\
$ (INCDIR) /h_bulletin.bit\
$ (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)
$ (TARGET) : $(OBJS) —_

$(CC) -o $@ $(OBJS) $(LIBRARIES) $ (LDFLAGS)
strip $(TARGET)
mv $(TARGET) $(BINDIR)

./h_bulletin/Makefile

$ (OBJS) : $ (HDRS)

.m_buuetixllh_buﬂetin.c

AAAAAALAALE AL EE LSS AL e Ll L NN
* MODULE NAME AND FUNCTION: (h_bulletin) -

*

{

The h_bulletin client provides the user with the host bulletin window for the
HISDE system. It allows the user to view the host messages which have been

received.

This client displays the host bulletin log file in a scroll window which
allows the user to view the last twenty host messages which were logged.

This client uses a timer routine to check if new host messages have

been logged. The default timer value is 2 seconds. If the user wants

to change the interval, he/she may do so in the command line when

running bulletin by using the ’‘-interval’ option. Whenever the timer
expires, the last position written to is read from the host_log file

and compared to the previous value read from the file. TIf the value

has changed it is an indication that new messages have been written to the
file.

* oA % % X * X X ¥ %

DESCRIPTION OF MAIN FUNCTION:

This is the main driver for the h_bulletin client of the HISDE system. It
initializes the X Windows system and then creates the widgets necessary for the
h_bulletin window. The window created contains a label for the bulletin
window, an exit command button, and a scroll window for the display of the
logged host bulletins.

‘&&i}&illld-illlltll&l&**&*

This client will display the window and then enter the XtMainLoop routine
and periodically update the display. It will also handle the user selecting
a command button.

If the exit button is selected, the exit_command() function is executed
and h_bulletin is terminated.

In order to periodically update the host bulletin display, a2 timer is started
before entering XtMainLoop. When this timer expires, the update bulletin()
function is executed. This function will access the host bulletin log file and
check if the position last written to has changed. 1If this is the case then new
messages have been received and the scroll window needs to be updated. Once the
scroll window has been updated, the timer is started again. This will continue
until the user selects the exit button.

LN 2NN N I A

SPECIFICATION DOCUMENTS:
/hisde/req/requirements
/hisde/design/design

EXECUTION SEQUENCE:

h_bulletin ([-interval seconds]

In addition to the X Windows options which may be used when running h_bulletin,
the following options are defined:

-interval [seconds] - indicates the interval, in seconds, desired by the user.

FILES USED AND APPLICATION DEFINED FORMATS:

/hisde/.host_log -~ This file is used by the h_bulletin client to retrieve
all host messages received in the message queue. It

l»l'l-i'ﬁl’l'l')tl}&%ll&*iﬁ*l’t*l’l-*&*&#t‘}#*******?!*#l#i}t&

l'ﬁ**“***‘lt&'lll—l*l&w'l"

{

Jh_bulletin/h_bulletin.c

written to this file must be of the same length.

maximum sizes for this file are defined in the
h_logfiles.h header file.

struct .host_log {
char [POSITION_OFFSET] last_position;
char [MAX_NUM_HOST * MAX MESSAGE] messages;

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division
Southwest Research Institute

*
*
*
*
*
*
*
*
*
*
*x
*
*
*
*
*
*
*
*
*
*
*
*

************i********t******t*************ﬁ'**tt*******t****i*t****i*******t***ﬁ***t*****t

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X1l1l/StringDefs.h>
#include <Xll/Cardinals.h>
#include <X11/Shell.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <hisde.h>
#include <h_user_inter.h>
#include <h_bulletin.h>
#include <h_bulletin.bit>
#include <h_logfiles.h>

* Declare all external widgets to be used by the h_bulletin application.
* This is required for their use in the callback and action routines.

*/
Widget top, m _main, mb_main, mp_file, bform, widget,

msg_scrll;

* Dpeclare the interval to be used for redisplaying the host bulletin log.
* Tt’s default is 2 seconds. This may be changed in the command line

* with the -interval parameter.

*/

unsigned long timer interval = DEFAULT_INTERVAL;

/*
* peclare the callback procedures to be executed when a command button is
*/

extern XtCallbackProc exit_command () ;

/*

is set up as a circular file with a maximum number of
messages. Because it is a circular file, each message

Therefore, each message is read into a blank message
buffer of the maximum message size possible. The
In order to maintain this file, the last position
written to in the file the last time a message was
added is stored at the beginning of the file. The

selected.

*
*
*
*
*
&
*
*
*
*
k4
*
*
*
x
*
x
*
*
*
*
»
*
/

./h_bulletin/h_bulletin.c

* Declare the callback procedure to be executed when the timer value expires.
*/

extern XtTiherCallbackProc update_bulletin(); —
main (argec, argv)
int argc;
char **argv;
{
/*
* Declare the application-specific resources allowed by this client. The
resource which may be set is the interval desired for updating the scroll
* window.
*/
static XrmOptionDescRec options[] = {
{"-interval", "Interval™, XrmoptionSepArg, NULL }
}:
static XtResource resources(] = {
{ "interval", "Interval”, XtRInt, sizeof(int), (Cardinal)&timer_interval,
XtRInt, (caddr_t)&timer_interval)
}:
/*
* Declare the callback list array to be used when creating command widgets.
* This array will contain the routines to be executed when the associated
* command button is selected.
*/
static XtCallbackRec command callbacks([] = { —
{ (XtCallbackProc) NULL, (caddr_t) NULL },
{ (XtCallbackProc) NULL, (caddr_t) NULL }
}:
Arg icon_arg, /* Argument used to initialize the icon.
*x/
args{ 1]; /* Arqgument list used to initialize various
* widget resources.
*/
XtIntervalld id; /* The ID necessary for identifying the timer.
*/
/*
* Initialize the X Windows system and create the top level widget for the
* host bulletin screen.
*/
top = XtInitialize (¢ BULLETIN_ SHELL, BULLETIN_CLASS, options, XtNumber (options),
&argc, argv);
/%
* If there were invalid arguments on the command line which could not be parsed,
* call the function, bad syntax, to display the correct syntax and exit from
* the client.
*/
if (arge > 1) ——
bad_syntax ("h_bulletin [-interval time)™);
/*

* Initialize the icon bitmap for this client.

/*

*/

/*
*/

/*
*/

/*
*/

J/h_bulletin/h_bulletin.c

XtSetArg (icon_arg, XtNiconPixmap,
XCreateBitmapFromData (XtDisplay(top), XtScreen (top) -> root,
h_bulletin_bits, h_bulletin_width, h_bulletin_height));

XtSetValues (top, &icon_arg, ONE);

Retrieve any application-specific resources which were initialized previously or
in the command line. This includes the scroll window update interval.
Multiply the specified interval by 1000 to convert in into milliseconds.

XtGetApplicationResources (top, (caddr_t)NULL, resources, XtNumber (resources),
NULL, ZERO }:;
timer_interval = timer_interval * 1000;

Create the main window widget and the menu bar which will contain all commands.

m_main = XmCreateMainWindow (top, ™", NULL, 0):
XtManageChild (m_main);

mb_main = XmCreateMenuBar (m_main, "", NULL, 0):
XtManageChild (mb_main);

Create pulldown for file commands.

command_callbacks[0].callback = (XtCallbackProc)exit _command;
mp_file = XmCreatePulldownMenu (mb_main, "7, NULL, 0):

create_cascade ("", mb_main, mp_file, LABEL FILE):
create_command ("", mp_£file, LABEL_EXIT, command_callbacks);

Create the help cascade.

widget = create_cascade ("", mb_main, NULL, LABEL_HELP);
XtSetArg (args[0], XmNmenuHelpWidget, widget):
XtSetValues (mb_main, args, 1);

Create the main form.
bform = create_form ("", m main);

Create the text widget to be used as the message window. It is created
with a vertical scrollbar to allow the user to page through displayed
messages.

msg_scrll = create_text (W_T_BULL, bform, ®»_ 1, XmMULTI_LINE_EDIT, 0):

Initialize the first iteration of the timer. This will cause the update_bulletin
callback routine to be executed. This routine will reset the timer each time
it completes its function.

/t

*/

Jh_bulletin/h_bulletin.c

id = XtAddTimeOut (timer_interval, update_bulletin, NULL);

g

Call XtRealizeWidget on the top level widget to display the h_bulletin window.

XtRealizeWidget (top):
Enter the Xtoolkit main loop to coordinate processing of all widget events.

This loop is terminated when the user selects the exit command button and
the associated callback procedure is executed to terminate this client.

XtMainLoop ():

J/h_bulletin/cbr_exit_com.c

/******ﬁ**********t******t***i*i*tit******t*****iﬁ****i*******t*i**t**********tt**i******t

* MODULE NAME AND FUNCTION: exit_command()

*
The exit_command function is a callback procedure attached to the exit
command button of the h_bulletin client. This function causes the client
to terminate naturally when the user selects the exit button.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

top (Widget) (I) - The top level form widget for the h_bulletin client.

ORIGINAL AUTHOR AND IDENTIFICATION:

Nancy L. Martin - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

»
*
L
*
L
LJ
*
*
*
%
*
*
*
*
*x
*
x
x
x
L
x
*
*
*
*
*‘k***********************t****t*********’kt**'kt****t**********i****t***********t*********/

*
*
*
*
*
*
*
*
*
*
*
*
* EXTERNAL DATA USED: (I’ - Input ‘0O’ - Output *1/0' - Input/Output)
*
*
*
*
*
*
*
*
*
*
*

#include <X11/Intrinsic.h>

/*
* Declare the top level widget.
*/

extern Widget top;

XtCallbackProc exit_command (widget, closure, calldata)

Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter is not
* used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client. This parameter is
* is not used by this function.

*/

{
/*
* Remove the top level widget and then close the h_bulletin display.
*/

XtUnmapWidget (top)

XCloseDisplay (XtDisplay(top));

e /*

* Exit the h_bulletin client with a zero.
*/

Jh_bulletin/cbr_exit_com.c

exit (0);

g

./h_bullgtir\/mn_bul_upd.g

/***t********t******it****t**i**tt*t*****tii****t****t**tt*****t********************tt***t

* MODULE NAME AND FUNCTION: update_bulletin() *
* 4
~ * This function is a timer callback procedure which is executed when the timer *
* interval expires. This function updates the scroll window with the contents of *
* the host bulletin log file if there have been messages added to the file. *
* (update_bulletin) determines whether there have been new messages added by *
* reading the position last written to the beginning of the file and comparing it *
* to the value read from the file the last time an update was necessary. If these *
* numbers are not the same then the file has been updated. *
* *
* Finally, update_bulletin reinitializes the timer value. This will cause *
* update_bulletin to be called continually, at the specified interval, to update *
* the host bulletin message scroll window when necessary. *
* *
* *
* SPECIFICATION DOCUMENTS: *
* *
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* EXTERNAL DATA USED: ('I’ - Input ‘O’ - Output ‘I/O’' - Input/Output) *
* *
* bform (Widget) (I) - The form widget created for the bulletin window. *
* *
* timer_ interval {unsigned long) (I) - *
* The interval used to set the timer for checking message queues. This *
* value is initialized to the the value defined as DEFAULT_INTERVAL in *
* the h_advisory.h include file. It may be changed in the command line *
* when executing this client. This value should be given in seconds. *
% It will be converted to milliseconds programmatically. *
*x *
* msg_scrll (Widget) (I/O) - *
* The file text widget created for the display of messages in the message *
* window. It is created with a vertical scroll bar on the left hand side *
* to allow the user to page through displayed messages. *
* b
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Nancy L. Martin - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
***************t*****t****************t*********t*******t*************t***********t******/

#include <stdio.h>

#include <fcntl.h>

#include <X11/Intrinsic.h>
#include <X11l/StringDefs.h>
#include <hisde.h>

#include <h_bulletin.h>
#include <h_logfiles.h>

/*
* peclare the timer interval value for use in starting the timer back up.
*/
~ 1} .
extern long timer_interval;
/*

* Declare the widgets which are accessed for the update.

/h_bulletin/tmr_bul_upd.c

*/

extern Widget bform,
msg_scrll;

XtTimerCallbackProc update bulletin (client_data, id)

caddr_t client_data: /* Specifies the client date that was registered
* registered for this procedure in XtAddTimeOut.
*/

XtIntervalId *id; /* Specifies the ID returned from the corresponding
* corresponding XtAddTimeOut call.
*/

{
static int last_position = 0;

/* The position value read from the file on the
* previous update.

*/

int fd, /* The file descriptor of the opened host bulletin
* log file.
*/
new_position; /* The value of the last position written to the
* file.
*/

char position (POSITION _OFFSET + 1];
/* The character string used to read in the last
* position written to.
*/

* Open the host bulletin log file for reading and read the value of
* the last position written to from the beginning of the file.

if ((£d = open (HISDE_HOST_LOG, O_RDONLY)) <= NULL) {
h_message (MSG_ERROR, "h_bulletin: Cannot open host bulletin file.");
exit (-1);

}

if (read (fd, position, POSITION OFFSET) != POSITION OFFSET) {

h_message (MSG_ERROR, "h_bulletin: Cannot read host bulletin file position.");
close (fd);

exit (-1);

Convert the character string read from the file to an integer and compare
it to the value read from the file on the previous update. If the

value has changed, assign the new position offset to the static variable,
last_position, for use in the next pass through this function. Next, call
update_window to read the messages from the file and update the message
scroll window.

* % % X % % % #

new_position = atoi (position);

if (new_position != last_position) ({
last_position = new_position;
update_window (fd, new_position);

./h_bulletin/trm_bulfupd.c

After the window has been updated, or if it did not need to be updated,
close the host bulletin log file.

close (£d):

When the scroll window has been updated (if needed), reset the timer so that
this routine will be called continually until the user selects to exit
the h_bulletin client.

*id = XtAddTimeOut (timer interval, update_bulletin, NULL);

./h_bulletinfupdate_win.c

/t**'k*******i*********i***i***t**********t**i***t****t***************t*************t*****t

* MODULE NAME AND FUNCTION: update_window () *
*

(

This function is called to read in the host bulletin messages from the

host bulletin log file starting with the oldest message. As each message
is read, it will be concatenated onto the end of the buffer to be written
in the message scroll window. When all message have been read from the

the file, update_text widget() is called with the buffer of host messages
to update the message scroll window with the new messages. The cursor will
then be placed at the beginning of the newly added messages and the

size of the message buffer is assigned to old_message_size for use during
the next update.

*

*

*

*

*

*

*

*

*

*

* In order to determine where the first message is in the circular log file,
* update_window will attempt to read the first message past the last position
* written to in the file. If there is a message in this position then the
* file is full and this message is the oldest message. If there is not a
* message following the last position written to, the file is not yet full
* and the oldest message is the first message in the file.

*

*

*

*x

*

x

*

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

EXTERNAL DATA USED: (‘I‘’ - Input ‘0O’ - Qutput ‘I/O’ - Input/Output)

l&&&ll&&l‘lll‘lll&l'l'l‘ltl-lll'&lr

msg_scrll (Widget) (I/O) - Text widget created for display of host messages.

" et

*
*
Nancy L. Martin - Software Engineering Section *
Data System Science and Technology Department *

Automation and Data Systems Division *

*

/

Southwest Research Institute
*k***t*********tt******’k************t****t**t*********tﬁ*tﬁ***************ﬁ*************

*
*

*

*

*

*

* ORIGINAL AUTHOR AND IDENTIFICATION:
*

*

*

*

*

*

#include <stdio.h>
#include <Xll/Intrinsic.h>
#include <hisde.h>
#include <h_logfiles.h>

extern Widget msg_scrll;

update_window (fd, new_position)

int fd, /* Specifies the file descriptor for the host
* host bulletin log file.
*/
new_position; /* Specifies the last position written to the host
* bulletin log file.
*x/
{ .
int i, /* Used to initialize the message buffer to blanks.
*/
position; /* Maintains the current position in the file.

*/

/*

*/

* * & % % X X *

»
~

* % % % % % F

J/h_bulletin/update_win.c

char buffer [MAX MESSAGE + 1 1;
/* Used to read in each host message.
*/

char display _msg(MAX_HOST_LOG + 11
/* Buffer which will contain all host messages.

*/

Initialize the scroll window buffer to blanks and assign the first position
to be null for concatenation purposes.

for (i = 0; i < MAX_HOST_LOG: i++)i
display msg[i] = BLANK;
display msg[0] = NULL;

Assign the last position written to as the position to seek to for reading.
position = new_position;

Try to read the next message after the most recently added message. If
the read fails, set the file position to the first message in the file
past the position value, read that message, and assign the file position
to be this message’s starting point.

If neither read is successful, call h_message to inform the user that
the host bulletin file cannot be read, close the file, and exit h_bulletin.

lseek (fd, position, 0L):
if (read (£fd, buffer, MAX MESSAGE) <= 0) {
lseek (fd, POSITION_OFFSET, OL):
position = POSITION_OFFSET;
if (read (fd, buffer, MAX MESSAGE) <= 0) {
h_message (MSG_ERROR, "h_bulletin: Cannot read first bulletin™);:
close (fd):;
exit (-1);

If the oldest message was successfully read from the file, append a newline
to the end of the message and then attach the message to the message buffer.
Update the file position pointer to point to the next message. Each message
read from the file is the same size, MAX_MESSAGE.

strcat (buffer, "\n"):
strcat (display msg, buffer);:
position += MAX MESSAGE;

If the new file position is greater than or equal to the maximum size of the
host bulletin log file, wrap around to the first message in the file. Note:
the first message in the file is located after the value indicating the

last position written to in the file. This value is of the size,
POSITION_OFFSET.

if (position >= MAX HOST_LOG)

/h_bulletin/update_win.c

position = POSITION OFFSET;

/*
* Loop through the file reading the next message until the end of file is reached —
* or the file position returns to the oldest message.

*

* For each message a newline is appended to the end of the message before it is

* attached to the end of the message buffer. The file position is updated to

* point to the next message in the file each time.

*/

while ((read (fd, buffer, MAX MESSAGE) > 0) && (position != new_position)) {

strcat (buffer, "\n"™);
strcat (display_msg, buffer):
position += MAX MESSAGE;

/%

* If the new file position is greater than or equal to the maximum size of the
* host bulletin log file, wrap around to the first message in the file. Note:
* the first message in the file is located after the value indicating the
* last position written to in the file. This value is of the size,
* POSITION_ OFFSET.
*/
if (position >= MAX HOST_LOG) {
position = POSITION_OFFSET;
lseek (fd, position, 0L);
}
}

/*

* Update the text widget. e
*/

update_text_widget (msg_scrll, display_msg);
XmTextSetInsertionPosition (msg_scrll, strlen (display msg));

./h_cm_menu/Makeﬁle |

##################################*###l################################*##*###############
Makefile for HISDE user interface client (h_cm menu)
ERERRER R R RRRRRRRR R R AR R R R R R R R R R R R R R R R e

#

Define the target which this file is to create.
#

TARGET = h_cm menu

¥

Initialize include and library search paths to include current directory and the
HISDE directories.

]

BINDIR = /hisde/bin

INCDIR = /hisde/src/include
INCDIRS = -IS$(INCDIR)

¥

Define the libraries to search. This includes the CM manager, user interface,
HISDE main, and all X windows libraries.
]

LIBRARIES = ~lcmutil -lui -lhisde -1Xm -1Xt -1X11

#

Define the compiler and linker flags.
#

CFLAGS = -0 $(INCDIRS)

LDFLAGS = -0 $ (EXTRAFLAGS)

¥

Define all objects which make up this target.

OBJS =\
cbr_cm_trm.o\
cbr_command.o\
cbr_clear.o\
set_to_insen.o\
h_cm menu.o

*
Define all header files required.
*
HDRS =\
$ (INCDIR) /h_cm _menu.h\
$ (INCDIR) /h_cm_menu.bit\
$ (INCDIR) /h_user_inter.h\
$ (INCDIR) /cm_util.h\
$ (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)

$ (TARGET) : $ (OBJS)
$(CC) -o $@ $(OBJS) $(LIBRARIES) $(LDFLAGS)
strip $ (TARGET)
mv $ (TARGET) $(BINDIR)

$(0BJS) :

$ (HDRS)

Jh_cm_menu/Makefile

R

J/h_cm_menu/h_cm_menu.c

/*****************ﬁ*tii*t*****iit**ﬁﬁ***i****'k*i***tt*i*t*******t*i**it*************t****t

MODULE NAME AND FUNCTION: (h_cm menu)

This client provides the user interface to the configuration management utilities
available on the local workstation. These commands provide access to the CM manager
workstation and the central CM host. This involves submitting jobs (applications) to
the CM manager workstation for compilation/loading, retrieving the executable files,
archiving the application to the central CM host, and finally, retrieving executable
files from the central CM host. The entire list of commands is as follows:

SUBMIT - Submit a job (application) to the CM manager workstation for compilation
and loading.

STATUS - Obtain the status of a job active on the CM manager workstation.
LISTDIR - List the contents of the directory corresponding to a job.

INFO - Display all information entered by the user for a submitted job.
RETURN - Return the newly loaded executable files to the local workstation.
ARCHIVE - Send all the files for a job to the central CM host.

CANCEL - Terminate a job and remove all associated files from the CM manager
workstation.

DOWNLOAD - Download a set of files resident on the central CM host, to the local
workstation.

HOSTDIR - Obtain a directory listing of files resident on the central CM host.

Note that the critical piece of data identifying a job is called the job control num-

ber. When the user submits an application to the CM manager workstation, a unique job
control number will be assigned and returned to the user. The majority of the remain-
ing commands will require entry of this number to identify the appropriate job. Note

that some commands require additional data as well. The entire list of data items is

as follows:

Job Control Number -~ Identifies the specific job. It is used for the STATUS,
LISTDIR, INFORMATION, RETURN, ARCHIVE, and CANCEL commands.

Flight - Identifies the flight for which a job is to be certified for. It is
used in the SUBMIT command.

Directory - Identifies the source and/or destination of files. It is used for
the SUBMIT and RETURN commands.

Executables - Identifies a list of executables which will be returned to the
local workstation. It is used for the SUBMIT and RETURN commands.

Description - Provides a textual description of the application making up the
job. It is used for the SUBMIT command.

Note that some data items are required and others are optional. A summarization of
the commands and required/optional data items is given below (Note that (R) indicates
a required item and (O) indicates an option item):

SUBMIT - (R) Flight
(0) Directory
(0) Executables
(0) Description

&*llli&&'*&l‘*i*il"*&i‘l*l'l'*‘-l‘*&l#‘&tt*ii}*#i*#t&‘-l*llllt&lll‘*#*

STATUS - (R) Job Control Number

l"*****I‘***&*tlt&it*)‘»!—itltl'#***ll’“‘t*#****'*!*******t*!—*t*#it*!-*‘

Jh_cm_menu/h_cm_menu.c

LISTDIR

- (0) Job Control Number

INFO - (R) Job Control Number
RETURN - (R) Job Control Number

(O) Directory

(O) Executables
ARCHIVE - (R) Job Control Number
CANCEL - (R) Job Control Number
DOWNLOAD - (R) Flight

(R) Directory

(R) Executables
HOSTDIR - (0) Flight

When this client is executed, it will display a window which contains four distinct
functional sub-windows. These include the following:

ID Window - This window identifies the client and provides two commands. These
include:

Clear - clear all input fields
Exit - exit from this client

Commands Window - This window contains each of the CM utility commands previously
discussed.

Input Window - This window contains the fields allowing entry of the data items
previously discussed. Note that when no command is active, all
input fields will be set to an insensitive state. In this state,
the borders and label text of the widgets will be displayed in a
different orientation and no mouse input will be acknowledged.

Output Window - This window is used to display information cutput by certain
commands.

In order to execute any of the CM utility commands, the user need simply select the
appropriate command button in the command window. At this time, all applicable fields
will change to a sensitive state, in which they appear in their normal orientation and
mouse/keyboard input is allowed. The user may now complete the appropriate fields and
then reselect the same command button to actually execute the command. The user may
alternatively select any other command button to abort the command.

It is important to note that the data in the input fields will not be cleared from
command to command. This supports the basic sequence of CM commands, in which the
user submits a job (and receives a job control number), makes several status requests
to determine its state, retrieves the executables, and finally, archives the files to
the CM host. With this sequence, the required data for each command is already pre-
sent in the input fields. 1In addition, certain other fields provide information about
the makeup of the job (even though they do not affect subsequent commands). Note that
if the user does need to clear data from fields, he may use the clear command or any
of the normal keyboard sequences which are supported by the text widget. Note that
the clear command may be used in either command state (before and during data input).

Note that when a command is actually being executed, this client will not respond to
mouse and keyboard input. Once the command is complete (call to the CM utility func-
tion), input will be accepted as normal.

The majority of the CM commands return status information via messages to the standard
HISDE message client. This includes successfull operation and error messages. Also,
certain commands will return additional information which will be displayed in the

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x
*
*
*

"*l-blll"-l'l‘&*&&'**ﬁl*l#t*ll‘

l&&l"('

Jh_cm_menuwh_cm_menu.c

output window. This includes the STATUS, LISTDIR, and HOSTDIR commands. When 3such a
command executes, the current information in the output window will be removed and the
new data displayed. This information will remain displayed until another such command
is used. The output window will not be changed by commands which do not return this

level of output information.

To exit from this client, use the exit command in the ID window. As with the clear
command, it is possible to exit during the data input phase of a command.

DESCRIPTION OF MAIN FUNCTION:

This is the main function of the h_cm menu client. It is responsibile for initiali-
zation of the resource database and all widgets which make up the window. Once all
widgets and their associated callbacks are initialized and realized, this function
calls the Xtoolkit intrinsic (XtMainLoop) to process all incoming events. This in-
cludes callbacks for the various command widgets (clear, exit, and CM command).

This function initializes a single hierarchy of widgets to present the menu of CM
manager functions and input fields. This consists of a main form and four child
forms, one of which contains an additional form for each input field. The complete
hierarchy of widgets is summarized below:

top ---> form -+-> form (Client) -+-> label

I (ID) +-> command (clear fields)

| +-> command (exit client)

|

+--> form (CM) =+=> command (submit command)

| (Commands) +=> command (status command)

| +-> command (list dir command)

| +=> command (info command)

| +=> command (return command)

| +=> command (archive command)

| +=> command (cancel command)

| +-> command (download command)

| +-> command (host list command)
J
+

(Descrip) +-> text (actual input)

--> form (Input) =+=> form (Job } =-+=> label

I (Fields) | (Number) +-> text (actual input)
| |

| +-> form (Job) =+-> label

| | (Flight) +-> text (actual input)
| I

| +=-> form (Job) -+-> label

| | (Directry) +-> text (actual input)
| |

1 +-> form (List Of) =-+-> label

| | (Executes) +-> text (actual input)
| |

| +-> form (Job) =-+-> label

|

!

+

--> form (Command) ~+-> label
(Output) +-> text (actual input)

Each of the forms used is offset from other forms to maintain a consistent layout of
information. The widgets with each form are in turn offset from one another in the
same way. This insures that homogenous widgets remain in close proximity and in a
sensible arrangement.

Once this function calls XtMainLoop, there are a number of callback events which may
be executed. These functions, the command widgets to which they are tied, and the
operations they perform are as follows:

i***i’*'l’*‘ﬁtl*tl‘*!’*ﬁ**l*i**l‘***l‘**ltﬁl‘*ﬁ*ii******&&t**i*****'*‘
It-lt&'*I&bi"*#lﬂl*#l&l*ill*ii&l*lt&&&lll&&‘il‘-il‘-"!tll’!Iii&lﬁ&'l#i

Jh_cm_menu/h_cm_menu.c

* »
* function event operation

X eemmee—= emmeme D em—mmmmn e
* cbr_clear clear command clear all input fields *
* cbr_cm_terminate exit command terminate h_cm menu client *
* cbr_command any CM command execute requested CM command *
* *
* For more information on these callback functions, refer to the code in the appropriate *
* source code file. *
* *
* 4
* SPECIFICATION DOCUMENTS: *
* *
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* EXECUTION SEQUENCE: *
* *
* h_cm_menu *
x* *
* *
* EXTERNAL DATA USED: (’I’ - Input ‘O’ - Qutput ’'I/Q' - Input/Output) *
* *
* This function initializes all declared widget variables. *
* *
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* : 4
* Mark D. Collier - Software Engineering Section

* Data System Science and Technology Department —
* Automation and Data Systems Division »
* Southwest Research Institute *
t*****t***t***********t**i***ﬁ********t**ttt***************t***********i**************t**/

#include <stdio.h>
#include <X11l/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xll/Cardinals.h>
#include <X11/Shell.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <h_cm _menu.bit>
#include <hisde.h>
#include <h_user_inter.h>
#include <h_cm menu.h>
#include <cm_util.h>

/*

* Declare all widgets which will be used by this client. This data is made external
* to allow simple access in callback functions.

*/

Widget top, m main, widget,
mb_main, mp_file, mp_edit, mp_cmd,
f_input, 1 job, t_job,
1_flight, t_flight,
1_exec, t_exec,
1l _dir, t_dir,
1_desc, t_desc,
f_output, 1_output, t_output;

N

Jh_cm_menu/h_cm_menu.c

/*
* Declare all the callback functions used by this client.
. */
extern XtCallbackProc cbr_cm_terminate(),
cbr_command 0.,
cbr_clear ()7

main (argc, argv)
int argc;
char *kargv;

Initialize the callback lists required for the clear fields, exit client, and CM
* manager commands functions. These callbacks occur when the user selects one of the
* associated command widgets.

static XtCallbackRec cb_command{] = {
{ (XtCallbackProc)cbr_command, (caddr_t)NULL 1},
{ (XtCallbackProc)NULL, (caddr_t)NULL }

}:

static XtCallbackRec cb_cm_terminate(] = {
{ (XtCallbackProc)cbr_cm_terminate, (caddr_t)NULL },
{ (XtCallbackProc)NULL, (caddr_t)NULL }

}:

static XtCallbackRec cb_clear(] = {
{ (XtCallbackProc)cbr_clear, (caddr_t)NULL },

T { (XtCallbackProc)NULL, (caddr_t)NULL }
}:
Arg icon_arg, /* Argument which will be used to initialize
* the graphic icon for this client.
*/
args{ 1 1; /* Arguments used to initialize widget resources.
*/

* Initialize the Xtoolkit, parse command line, and return the root widget which will be
* the parent of the window. Note that this client does not have any application
* specific resources (NULL and 2ERO parameters) .

top = XtInitialize (NAME_ SHELL, NAME_APLIC, NULL, 2ERO, &argc, argv)

* If there were arguments on the command line which could not be parsed, call the
* function (bad_syntax) to report the error, display the correct syntax, and exit from
* the client.

if (argc > 1)
bad_syntax ("h_cm _menu");
/*

* TInitialize the icon bitmap for this client.

XtSetArg (icon_arg, XtNiconPixmap,
XCreateBitmapFromData { XtDisplay(top), XtScreen(top)->root,

/*

*/

/%
*/

/*
*/

/%
*/

/%
*/

Jh_cm_menu/h_cm_menu.c

h_cm_menu_bits, h_cm menu_width, h_cm menu_height))

XtSetValues (top, &icon_arg, ONE);

Create the main window widget and the menu bar which will contain all commands.

m_main = XmCreateMainWindow (top, "", NULL, 0);
XtManageChild (m_main);

mb_main = XmCreateMenuBar (m_main, "", NULL, 0);
XtManageChild (mb_main);

Create pulldown for file commands.

mp_file = XmCreatePulldownMenu (mb_main, "", NULL, 0);
create cascade ("", mb_main, mp_file, LABEL_FILE
create_command ("", mp_file, LABEL EXIT, c¢b_cm_terminate

Create pulldown for edit commands.

mp_edit = XmCreatePulldownMenu (mb_main, "", NULL, 0);
create_cascade ("", mb_main, mp_edit, LABEL EDIT):
create_command ("", mp_edit, LABEL_CLEAR, cb_clear);

Create pulldown for CM commands.

mp_cmd = XmCreatePulldownMenu (mb_main, "", NULL, 0);
create_cascade (NULL, mb_main, mp_cmd, LABEL_COMMANDS);

cb_command[0).closure = (caddr _t) SUBMIT;

Create_command ("", mp_cmd, LABEL_CMD_SUBMIT, cb_command) ;
cb command[O] closure = (caddr t)STATUs,

create_command ("", mp_cmd, LABEL _CMD_STATUS, cb_command) ;
cb command[O] closure = (caddr t)LISTDIR,

Create_command ("", mp_cmd, LABEL » CMD_LISTDIR, ¢cb_command)
cb command[O] closure = (caddr t)INFORMATION.

create_command ("", mp_cmd, LABEL_CMD_INFO, cb_command) ;
cb command[O] closure = (caddr t)RETURN

Create_command ("", mp_cmd, LABEL , CMD_RETURN, cb_command) ;
cb command[O] closure = (caddr t)ARCHIVE,

create_command {("", mp_cmd, LABEL _CMD_ARCHIVE, cb_command);
cb command[O] closure = (caddr t)CANCEL,

create_command ("", mp_cmd, LABEL_CMD_CANCEL, cb_command) ;
cb command[O] closure = (caddr t)DOWNLOAD,

create_command ("", mp_cmd, LABEL CMD _DOWNLOAD, cb_command);
cb command[O] closure = (caddr t)HOSTDIR,

create_command ("", mp_cmd, LABEL_CMD HOSTDIR, cb_command) ;

Create the help cascade.

widget = create _cascade ("", mb_main, NULL, LABEL _HELP) ;
XtSetaArg (args(0], XmNmenuHelpWidget, widget):
XtSetValues (mb_main, args, 1);

)y
)s

Jh_cm_menu/h_cm_menu.c

/*
*x Create the form used for the work area.
*/
f_input = create_form (W_F_INPUT, m _main);
/*

* Initialize the label and text widget for the job control number input field.
* Note this this and all text widgets are editable.

1_job = create_label (W_L_INPUT_JOB, f_input, LABEL_JOB);
t_job = create_text (W_T_INPUT_JOB, f_input, "", 0, XmSINGLE_LINE_EDIT, 1);
XmAddTabGroup (t_job):

/*
* Initialize the label and text widget for the flight input field.
*/

1_flight = create_label (W_L_INPUT_FLIGHT, £ input, LABEL FLIGHT);
t flight = create_text (W_T_INPUT FLIGHT, f_input, "", 0, XmSINGLE_LINE EDIT, 1):
XmAddTabGroup (t_£flight);

* TInitialize the label and text widget for the list of executables input
* field. Note that this text widget includes a vertical scrollbar.

1 _exec = create_label (W_L_INPUT_EXEC, f_input, LABEL_EXEC);
t_exec = create_text (W_T_INPUT_EXEC, f_input, "", 1, XmMULTI_LINE_EDIT, 1)
XmaAddTabGroup (t_exec);

* Tnitialize the label and text widget for the source/destination directory
* field Note that thsi text widget includes a vertical scrollbar.

INPUT DIR, f_input, LABEL_DIR);

1 dir = create_label L
T_INPUT DIR, f_input, "", 0, XmSINGLE_LINE_EDIT, 1);

(W
t_dir = create_text (W_
XmAddTabGroup (t_dir):

* TInitialize the label and text widget for the job description field.
* Note that this text widget includes a vertical scrollbar.

1_desc = create_label (W_L INPUT_DESC, f_input, LABEL_DESC);
t_desc = create_text (W_T_INPUT_DESC, f input, "", 1, XmMULTI_LINE EDIT, 1);
XmAddTabGroup (t_desc):

* TInitialize the shell window for the output information area. It includes a label and
* a text widget.

f_output = XmCreateFormDialog (top, W_F_OUTPUT, NULL, 0):

1 _output = create_label (W_L_OUTPUT, f_output, LABEL_OUTPUT) ;

t_output = create_text (W_T_OUTPUT, f_output, "", 1, XmMULTI_LINE EDIT, 0):
XtManageChild (f_output):

* Define the areas which constitute the main window widget.
*/

Jh_cm_menu/h_cm_menu.c

XmMainWindowSetAreas (m main, mb_main, NULL, NULL, NULL, f_input);

Realize the top level widget. This causes the main form of this client to be
displayed, along with all child widgets.

XtRealizeWidget (top);:

Call the (set_to_insensitive) function to set all input fields (label and

text widgets) to their initial insensitive state. In this state, their visual
orientation is different and no mouse/keyboard input is acknowledged.
set_to_insensitive ();

Enter the normal Xtoolkit main loop, which coordinates processing of the various
widget events. This loop will terminate normally when the user selects the "Exit"
command, which in turn causes the cbr_cm terminate callback routine to be executed.
XtMainLoop ():

Jh_cm_menu/cbr_command.c

/**t***********t****t****t*******t*k**

MODULE NAME AND FUNCTION (cbr_command)

This callback function is executed whenever the user selects one of the command wid-
gets used to present the available CM manager functions. This function is set up to
process all commands. It determines the command which was selected and peforms the

actions necessary to execute it.

Before any command is selected, all input fields (form/label/text widgets) are set to
an insensitive state. Once a command is selected, this function will set to sensi-
tive, all fields which are required or optional for the command. At this point, the
the user may either enter data and then reselect the same command (which causes the
command to be executed), or he may select any other CM manager command (which causes
the command to be aborted). This process is allowed by separating the actions taken
when the command is first selected and those taken when the command is selected a sec-

ond time.

When a command is first selected, this only actions taken by this function are to set
the appropriate fields to sensitive.

When a command is selected a second time (assuming that it is the same command), all
required fields are checked, the input fields are reset to insensitive, the CM manager
is called to execute the requested function, and the return data is displayed in the
output window (if applicable). Note that output may also be in the form of messages
sent to the HISDE message client. Note also that if the user omits a required piece
of data, a message will be output and the command will remain in its entry state (in-
put of data).

*

*

*

*

*

*

*

*

%*

*

*

*

*

*

*

*

*

*

*

*

*

*x

*

*

*

*

*

*

* SPECIFICATION DOCUMENTS:

*

* /hisde/req/requirements
* /hisde/design/design
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x*
*
*
*
*
*
*
*
*
*
*
*
*
*

EXTERNAL DATA USED: (’I’ - Input ‘O’ - Output ‘I/O’ - Input/Output)

Pointer to the text widget used for the output text.
It recreated by this function when the CM manager
returns an output buffer.

t_output (Widget) (I/0)

t_job (Widget) (I) - Pointer to the text widget containing the job data.
This widget is needed to clear the text.

t_flight (Widget) (I) - Pointer to the text widget containing the flight
data.

t_dir (Widget) (I) - Pointer to the text widget containing the directory
data.

t_exec (Widget) (I) - Pointer to the text widget containing the list of
executables.

t_desc (Widget) (I) - Pointer to the text widget containing the job desc-
cription.

1 job (Widget) (I) - Pointer to the label widget containing the job data.
This widget is needed to make the field appear
insensitive.

1 _flight (Widget) (I) - Pointer to the label widget containing the flight
data.

LA R A U R N R S I O N R R N N N SN O R T TN TR S S T SN S S S SN S S S S NS S SN S SNV S S S N 2

1 dir (Widget) (I) - Pointer to the label widget containing the directory

Jh_cm_menu/cbr_command.c

* data. *
*

* 1 _exec (Widget) (I) - Pointer to the label widget containing the list of _.
* executables.

* x
* 1_desc (Widget) (I) - Pointer to the label widget containing the job desc- *
* cription. *
* *
* &
* QRIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
t***t*******tt*********t‘k*********************t*********t**'k***t****t*******t*****‘k***tit/

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <hisde.h>

#include <h_user_inter.h>
#include <h_cm_menu.h>
#include <cm util.h>

extern Widget £ output, t_output,
t_Jjob, t_exec, t_flight, t_dir, t_desc,
1_job, 1_exec, 1 _flight, 1_dir, 1_desc:

XtCallbackProc cbr_command (widget, closure, calldata)
Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter will be
* be set to a value which identifies the selected
* command.
*/
calldata; /* Specifies any callback-specific data the widget
* needs to pass to the client. This parameter is
* is not used by this function.
*/
{
static int in_command, /* This variable indicates the state of the current
* command. If FALSE, no command is currently ac-
* tive; if TRUE, a command has been selected and
* the user is allowed to input data.
*/
command; /* When (in_command) is TRUE, this variable will be
* set to the command selected. It is used to deter-
* mine if the user selected the same command (exe-
* cute) or a different command {(abort).
*/
int job_num; /* For the SUBMIT command, this variable will be set
* to the assigned job number.
*x/ e’
register int temp_command, /* Set to the last command selected. It is compared

* to (command) to determine if the user wants to
* execute or abort a command.

./h_cm_menu/cbr_command.c

*/
len; /* Temporary variable used to save the length of
* certain strings.
. ./
char *temp_buffer, /* Pointer which will be updated by the CM manager
* function when a status buffer is returned.
*/
temp_Jjob, / Temporary buffer for the job number. The normal

* data is placed in this buffer to allow the CM
* manager function to update it without adversely
* affecting the widget.

*/
temp dir, / Temporary buffer for the filename.
*/
temp_flight, / Temporary buffer for the flight.
*/
temp_exec, / Temporary buffer for the executables.
*/
temp_desc, / Temporary buffer for the description.
*/
job_number(6]; /* String needed to format and display a returned
* job number.
*/
/%
* If just starting a command (flag in_command is FALSE), then determine which command
+ was selected and save in the static variable (command). This value is required to
* indicate which command was initially selected. Also set the static variable
* (in_command) to TRUE to indicate the state of the command.
*/
if (in_command == FALSE) {
command = (int)closure;
in_command = TRUE;
/*
* Based on the selected command, set the appropriate input text and label widgets
* to a sensitive state. This allows the user to enter data into the fields.
* Also clear any data which is not relevant to the operation.
*/

if (command == DOWNLOAD) {

XtSetSensitive (t_flight, TRUE);
XtSetSensitive (t_dir, TRUE)
XtSetSensitive (t_exec, TRUE) ;
XtSetSensitive (1_flight, TRUE);
XtSetSensitive (1_dir, TRUE) :

):

XtSetSensitive (1_exec, TRUE
clear_text_widget (t_Jjob)i
clear_text_widget (t_desc);

} else if (command == HOSTDIR) {
XtSetSensitive (t_£flight, TRUE
XtSetSensitive (1_£light, TRUE
clear_text_widget (t_job)
clear text widget (t_dir)
clear_text_widget (t_desc)
clear_text_widget (t_exec)

—

..

} else if (command == RETURN) {
XtSetSensitive (t_job, TRUE
XtSetSensitive (t_dir, TRUE

—
~. W

./h_cm__menu/cbr_command.c

XtSetSensitive (t_exec, TRUE);
XtSetSensitive (1_job, TRUE);
XtSetSensitive (1l_dir, TRUE);
XtSetSensitive (1_exec, TRUE) —
clear_text_widget (t_flight);
clear_text_widget (t_desc) :

} else if (command == SUBMIT) {

XtSetSensitive (t_flight, TRUE);
XtSetSensitive (t_dir, TRUE) ;
XtSetSensitive (t_exec, TRUE):
XtSetSensitive (t_desc, TRUE) ;
XtSetSensitive { l_flight, TRUE),
XtSetSensitive (1_dir, TRUE);
XtSetSensitive (1_exec, TRUE) ;
XtSetSensitive (1_desc, TRUE)

clear_text_widget (t_job);

} else |
XtSetSensitive (t_job, TRUE);
XtSetSensitive (1_job, TRUE };
clear_text_widget (t_flight):
clear_text_widget (t_dir)i
clear text_widget (t_exec)
clear_text_widget (t_desc)

’

/* ‘
* Otherwise, we are in the second phase of the command.
*/
} else {
/t
* To complete a command, the appropriate command widget must be selected again.
* Examine the command which was selected, if different, assume that the user
* wants the command aborted. 1In this case, set all input fields to the insen-
* setive state, output a message, and reset the command state (set in_command to
* FALSE) .
*/
temp_command = (int)closure;
if (command != temp_command) {
set_to_insensitive ();
display_message (MSG_WARNING, "Command was aborted - make a new selection"):
in_command = FALSE;
return;
}
/*
* Get the data in each of the text widgets.
*/
temp job = get_text_widget (t_job):
temp_flight = get_text_widget (t_flight);
temp dir = get_text widget (t_dir);
temp_exec = get_text_widget (t exec):
temp desc = get_text widget (t _desc |
/%
* Verify that the user has completed all required input fields. 1If a required R
* field was omitted, output a message and exit from this function. 1In this case,
* the command will still be in effect. Note that if the LISTDIR command is left
* blank, it is assumed that the user requires status on all active jobs. This

Jh_cm_menu/cbr, _pommand.c

requires setting the job number to a constanct recognized by the CM manager.

* For a discussion of the CM commands and the fields which are required for each,
* refer to the header block comment in the main (h_cm_menu) function.
*/

if (command == DOWNLOAD) {
if (strlen(temp_flight) == 0 || strlen(temp_exec) == 0) {
display_message (MSG_WARNING,
"Flight and executable fields are required"):;

return;
}
} else if { command != SUBMIT && command != HOSTDIR) |{
if { (strlen(temp job) == 0) || ((job_num = atoi(temp job)) == 0))
if (command == LISTDIR)
job_num = LIST_ALL PROCESSES;
else {
display_message (MSG_WARNING,
"The job control number field is required”):
return;
}
} else if (command == SUBMIT) {
if (strlen {(temp_flight) == 0) {
display message (MSG_WARNING, "The flight number field is required”);
return;

}

/*
* Control will reach this point if all data entered by the user is valid. This
* requires that all input fields be set to insensitive to indicate that they may
* no longer be changed.
*/
set_to_insensitive ()
/*

* TInsure that the last entry in the list of executables is terminated by a newline.
* This is done to simplify processing by the CM manager function.

*/
if (command == SUBMIT || command == RETURN || command == DOWNLOAD)
if ((len = strlen (temp_exec)) && temp exec{len-1] != ‘\n’) ({
temp_exec[len] = ’\n’:
temp_exec[++len] = NULL;
}
/*

* Call the CM manager to execute the requested command with the supplied data. If

* the SUBMIT command was selected, the assigned job number will be returned in the

* (job_num) variable. The (temp_buffer) variable will be updated to point to the

* output of the command (this pointer will be NULL for commands which do not

* return any output). Note that if this function returns a non-zero value if

* a fatal error occurred.

*/

if (cm_command (command, &job_num, temp_flight, temp_dir, temp_exec,
temp_desc, &temp buffer) == 0) {
/*

* If the command selected was SUBMIT, then the CM manager will have returned
— * the number assigned to the submitted job. Take this value, convert to ascii,

* and use the user interface library function (update_text widget) to place

* the value in the job number text widget (Jj_job).

*

Jh_cm_menu/cbr_command.c

if (command == SUBMIT) {
sprintf (job_number, "%05d", job_num);
update_text_widget (t_job, job_number);

XtFree (temp_desc

el
/*
* If the command selected was INFORMATION, then the CM manager will have
* returned submit information in the flight, directory, executables, and
* description parameters. Use the data in these parameters to update the
* appropriate text widgets.
*/
} else if (command == INFORMATION) {
update_text_widget (t_flight, temp_flight);
update text widget (t_dir, temp dir):
update_text widget (t_exec, temp exec)
update_text_widget (t_desc, temp_desc)
}
/*
* If the command returned a status buffer of information (temp_buffer not NULL),
* update text widget.
*/
if (temp buffer != NULL) {
update_ text_widget (t_output, temp buffer);
free (temp_buffer):;
}
/*
* Otherwise (cm command) call failed, 3o output a message (in addition to detailed
* message by CM.
*/ .
} else
display_message (MSG_ERROR, "CM command failed - see advisory window");
/*
* Set the state flag to indicate that the command is complete.
*/
in_command = FALSE;
/*
* Free all memory allocated for text strings.
*/
XtFree (temp_ job)
XtFree (temp flight):
XtFree (temp_dir):
XtFree (temp exec):
):
*/

J/h_cm_menu/set_to_insen.c

/***ﬁﬁ*;;;;*t**i**ﬁt***i***t***it***t**********;*;*t*******;**tt**;*******t**t***tt**t*ttt
MODULE NAME AND FUNCTION (set_to_insensitive) *
This function is used to set each of the data input widgets to an insensitive state.
Once in this state, the borders and labels of the widget are modified so that they are
less vivid (every other pixel is turned off). In addition, insensitive widgets do not

recognize mouse pointer events. This prevents the user from modifying any data within
a widget in this state. This makes it easy for the user to identify data which is not

required for a given function.

SPECIFICATION DOCUMENTS:
/hisde/req/requirements
/hisde/design/design

EXTERNAL DATA USED: (I’ - Input ‘O’ - OQutput *1/0’ - Input/OQutput)
t_job (Widget) (I) - The text widget containing the job number.

t_flight (Widget) (I) - The text widget containing the flight.

t_exec (Widget) (I) - The text widget containing the list of executable files.
t_desc (Widget) (I) - The text widget containing the job description.

1 _job (Widget) (I) - The label widget containing the job number.

1_flight (Widget) (I) - The label widget containing the flight.

1 dir (Widget) (I) - The label containing the destination directory.

1_exec (Widget) (I) - The label widget containing the list of executable files.

1_desc (Widget) (I) - The label widget containing the job description.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute

*
*
*
*
*
*x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* t_dir (Widget) (I) - The text containing the destination directory.
*
*
*
*
*
*
*
*
*
*
*
*
*
*x
*
*
*
*
*
*
*
*
tt*********ttt***i**ﬁ***iﬁ*************t*************************t*t************k********

*
L
*
x
b
x
*
x*
4
x
*
*
*
*
*
*
*
g
*
k]
|
»
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
L]
x
*
*
*
x
/

#include <X11/Intrinsic.h>

extern Widget t_job, 1_job,
t_flight, 1 _flight,
t_dir, 1 _dir,
t_exec, 1_exec,
t_desc, 1_desc;

int set_to_insensitive ()

{

/*

* Use the Xtoolkit intrinsic XtSetSensitive function to set each of the text and label
* widgets to the insensitive state.

XtSetSensitive
XtSetSensitive
XtSetSensitive
XtSetSensitive
XtSetSensitive

XtSetSensitive
XtSetSensitive
XtSetSensitive
XtSetSensitive
XtSetSensitive

t_job,
t_£flight,
t_dir,
t_exec,
t_desc,

1_job,
1 flight,
1 dir,
1_exec,
1_desc,

Jh_cm_menu/set_to_insen.c

FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE

~

. we

~e

e e

e e we

./h_cm__r}nenu/cbr_clear‘.q)

/**i*******t*it**********ﬁ**iﬁ***i********ﬁﬁ***ﬁii*****i**********t************i*********f

* MODULE NAME AND FUNCTION (cbr_clear) *
* b]
~ x This callback function is called when the user selects the clear command. It simply *
* clears all data from each of the input fields. This provides a convienient means of *
* initializing the fields when the user needs to enter data which is radically different *
* from that currently displayed. *
* x
* *
* SPECIFICATION DOCUMENTS: *
* *
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* EXTERNAL DATA USED: (’I’ - Input ‘O’ - Output 'I/O’" - Input/Output) *
* *
* t_job (Widget) (I) - Pointer to the text widget containing the job number. *
* *
* t_flight (Widget) (I) - Pointer to the text widget containing the flight. *
* *
* t_dir (Widget) (I) - Pointer to the text widget containing the destination *#
* directory. *
* »
* t_exec (Widget) (I) - Pointer to the text widget containing the list of *
* executable files. *
* *
* t_desc (Widget) (I) - Pointer to the text widget containing the job des- *
* cription. *
* »
* *
_ * ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
****t**t***i*******t******i*************t******************ﬁ******t*********t************/

#include <X11l/Intrinsic.h>
#include <X11/StringDefs.h>
#include <h_user_inter.h>

extern Widget t_job,
t_flight,
t_dir,
t_exec,
t_desc;

XtCallbackProc cbr_clear (widget, closure, calldata)

Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter is not
- * used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client. This parameter is
* is not used by this function.

+/h_cm_menu/cbr_clear.c

*/

Use the HISDE user interface library function (clear text_widget) to clear each of
* the text input widgets.

clear text_widget ():
clear_text_widget (t_):
clear text_widget (t_dir):
clear_text_widget ()i
clear text widget ():

./h_cm_menu/cbr_cm_trm.c

/tt*i*************t*******'k******************t**i*t***********i***t*******t*it*****tt****

MODULE NAME AND FUNCTION (cbr_cm terminate)

to be destroyed.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

top (Widget) (I) - Pointer to the root widget of the window.

ORIGINAL AUTHOR AND IDENTIFICATION:
Mark D. Collier - Software Engineering Section

Automation and Data Systems Division

*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Southwest Research Institute
*

#include <X11l/Intrinsic.h>
#include <X11/StringDefs.h>

extern Widget top:;

XtCallbackProc cbr_cm _terminate (widget, closure, calldata)

This callback function is called when the user selects the exit command widget.
function destroys the top level widget, which causes the entire hierarchy of widgets

EXTERNAL DATA USED: (I’ - Input ‘O’ - Output 'I/O’ - Input/Output)

Data System Science and Technology Department

****************t********************i********t*******‘k*******i******t*********it*******

This

A B N I I BN BN RN B B S N B I S N R S R R I IR R

Widget widget; /* Set to the widget which initiated this callback
* function.
*x/
caddr_t closure, /* Callback specific data. This parameter is not
* used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client.
* is not used by this function.

This parameter is

*/
{
XEvent event; /* Event structure needed to make the calls to the
* XtNextEvent and XtDispatchEvent functions.
*/
/*
* pestroy the root application shell widget and thereby, all subordinate widgets which
* make up the window and any popup windows used for menus.
*/
XtDestroyWidget (top):
/*
* Determine if any events have been queued. These will normally be events which
* cause the widgets destroy callback to be executed. Waiting and then processing

the events insures that all data structures initialized by the widgets are

Jh_cm_menu/cbr_cm_trm.c
properly deallocated.

XtNextEvent (&event);
XtDispatchEvent (&event):

Close the display to deallocate any connections set up by X Windows.
exit from the client.

XCloseDisplay (XtDisplay (top)):
exit (0);

Next

./h_cmd/Makgfﬂg 1 s

Tk

##############################i###i##################0####################################

Makefile for HISDE user interface client (h_cmd).
########*###

#

Define the target which this file is to create.
#

TARGET = h_cmd

#

Initialize include and library search paths to include current directory and the
HISDE directories. Note that the library path also includes the user interface

library.

#

BINDIR = /hisde/bin

INCDIR = /hisde/src/include
INCDIRS = -I. -I$(INCDIR)

#

Define the libraries to search. This includes the HISDE library, the local user
interface library, and all required X libraries.

#
LIBRARIES = -lui -lhisde ~-1Xm -1Xt -1X11
#
Define the compiler and linker flags.
#
CFLAGS = -0 $(INCDIRS)
LDFLAGS = -0 $(EXTRAFLAGS)
¥
Define all objects which make up this target.
¥
OBJS =\
cbr_cmd_trm.o\
cbr_command.o\
load_cmds.o\
save_cmds.o\
get_home_dir.o\
h_cmd.o
#
Define all header files required.
#
HDRS =\
$ (INCDIR) /h_cmd.h\
$ (INCDIR) /h_cmd.bit\
$ (INCDIR) /h_user_inter.h\
$ (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)
$(TARGET) : $(OBJS)

$(CC) -o $S@ $(OBJS) S$(LIBRARIES) $(LDFLAGS)

strip $ (TARGET)
mv $(TARGET) $(BINDIR)

$(OBJS) : $ (HDRS)

Jh_cmd/Makefile

/h_cmd/cbr_command.c

/**************************i****i***************t************t***ﬁ************i***i******t

MODULE NAME AND FUNCTION (cbr_command)

This callback function is activated when the user wants to execute a command. It gets
the currently highlighted text from the command list text widget, determines how it is
to be executed, and then actually executes the command.

Note that this function is called for each of the four command widgets. The (closure)
parameter will be set to a value which indicates which command was selected. These
widgets and the manner in which they cause the command to be executed are as follows:

initialization of a controlling window (X and HISDE clients).

¥
*
L]
4
*
X
»
*
*
NO WIN/NO ICON - This widget is used to execute a command which does not require *
x
E
WINDOW/NO ICON - This widget is used to execute a command which requires initial- *
jzation of a controlling window (normal UNIX commands). It runs *

an xterm window with a Bourne shell, which in turn executes the *

users command. Note that when the command is complete, the user *

is required to press the RETURN key to cause the window to be *

terminated. This is necessary, as many commands complete as *

k4

soon as they finish output of data.

NO WIN/ICON - This widget is used to execute a command which does not require
initialization of a controlling window. However, note that it
executes the command in an iconic state.

*
*
*
*
x
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
®
*
*
* WINDOW/ICON - This widget is used to execute a command which requires initial-
* ization of a controlling window. However, note that it executes
* the command in an iconic state.
*
*
*
*
x
®
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Note that this function will not execute a command which spans multiple lines. Errors
will be reported to the root or xterm window.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

EXTERNAL DATA USED: (I’ - Input ‘O’ - Output ‘I/0’ - Input/Output)

t_list (char []) (I) - Widget containing the command list. This variable
is required in order to determine which command was
highlighted by the user.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
t**itt****t******ﬁt***i******i***itt**i****i******t*it********t**ﬁt*****t******t**

#include <X1l1l/Intrinsic.h>
#include <string.h>
#include <hisde.h>
#include <h_user_inter.h>
#include <h_cmd.h>

#define AMPERSAND g’

/h_cmd/cbr_command.c

extern Widget t_list;

g
XtCallbackProc cbr command (widget, closure, calldata)
Widget widget: /* Set to the widget which initiated this callback
* function.
x/
caddr_t closure, /* Set to a value which indicates whether the command
* is to be executed in a window and/or initialized
* as an icon. It will be one of the following
* values:
*
* NOWIN_NOICON - No window and no icon
* WIN_NOICON - Window and no icon
* NOWIN_ICON - No window and icon
* WINDOW_ICON - Window and icon
*/
calldata; /* Specifies any callback-specific data the widget
* needs to pass to the client. This parameter is
* is not used by this function.
*/
{
register char *ptr; /* Temporary pointer used to scan the command (cmd)
* for an ampersand.
*/
char *cmd, /* Set to the command which is highlighted by the
* user. It must be formatted before actually
* used. e
*/
command[FMT_SIZE + 1];/* Set to the final formatted command which will
* actually be executed.
*/
/*
* Get the currently highlighted text.
*/
cmd = get_text_sel widget (t_list);
/%
* If a command was not specified (no highlighted text), output a warning message and
* return.
*/
if (cmd == NULL) {
display message (MSG_WARNING,
"No command specified - Highlight the desired command”);
return;
)
/*
* Determine if the command contains a newline (multiple lines). If 80, output a warning
* and return.
*/
if (strchr (cmd, NEWLINE) || strlen (cmd) > CMD_SIZE) ({ —

display message (MSG_WARNING,
"Command contains a newline or command is too long");
return;

/*

*/

./h_cmd/cbr_command.c

If the command includes an ampersand (’'&’), remove it, as all commands are auto-
matically run in the background.

if (ptr = strchr (cmd, AMPERSAND))
*ptr- v,

Based on the command widget selected by the user, initialize the final command.
if { (int) closure == NOWIN_NOICON)

sprintf (command, FMT_CMD, emd)

else if ((int) closure == WIN_NOICON
sprintf (command, FMT_CMD_W, cmd)/

else if ((int) closure == NOWIN_ICON)
sprintf (command, FMT_CMD_I, cmd)

else if ((int) closure == WIN_ICON
sprintf (command, FMT_CMD_W_I, cmd):;

Actually execute the command. If an error occurs, output a warning to the system
message client.

if (system (command))
display message (MSG_WARNING, "Could not execute the specified command");

Jh_cmd/h_cmd.c

/*****it*****t***t******i***t***i***tt**ti***i**t***********************i*******t******ttt

MODULE NAME AND FUNCTION: (h_cmd)

* X O % N O % % % ¥ % % % ¥ % X % % H ¥ % ¥ * % ¥ X % X X % O % ¥ X ¥ X X ¥ W ¥ % X % X X % ¥ F* ¥ X X* X ¥ X H F ¥ X * * * X *

This HISDE client provides a means by which users can execute normal UNIX commands.
It is intended to provide a reasonable alternative to the UNIX shell. While at the

current
to add.

time it does not provide any type of command checking, it would be very easy
While this client is not intended to replace the UNIX shell, it does provide

a reasonable command interface in an environment where UNIX commands are required, but
not frequently used.

When this client executes, it first examines the user’s home directory for a .history

file.

then be
client.
delete,
is done
command
mand is

If found, the file will be opened and all commands read. These commands will

displayed in a large text widget which dominates the window presented by this
This widget (which contains a scrollbar), allows the user to add, change,
and duplicate commands. The user may of course also execute a command, which

by selecting (with the mouse cursor) the command to be executed. Once the

is selected (highlighted), the user must select the manner in which the com-
executed. This will be via one of the four command widgets located beneath

the command list text widget. The four widgets and the manner in which they execute
commands is as follows:

NO

WINDOW/NQ ICON

WIN/NO ICON This widget is used to execute a command which does not require

initialization of a controlling window (X and HISDE clients).

This widget is used to execute a command which requires initial-
ization of a controlling window (normal UNIX commands). It runs
an xterm window with a Bourne shell, which in turn executes the
users command. Note that when the command is complete, the user
is required to press the RETURN key to cause the window to be
terminated. This is necessary, as many commands complete as
soon as they finish ocutput of data.

NO WIN/ICON - This widget is used to execute a command which does not require
initialization of a controlling window. However, note that it
executes the cdmmand in an iconic state.

WINDOW/ICON ~ This widget is used to execute a command which requires initial-

ization of a controlling window. However, note that it executes
the command in an iconic state.

Note that irregardless of the which command widget is used, the command will be exe-~
cuted without wait. It will run independently from this client. This allows the user
to execute any number of commands from this client. Note also that all commands are
executed via the ’system’ function call. Therefore, all features of the Bourne shell

will be

available.

Note that a command which is iconified executes as normal, but does not perform any
input or output. This allows icons to be created for background processes which do
not communicate with the user, but still execute.

Note that a major advantage of this client is that it maintains a history of commands
in the same way the ‘C’ shell does. It also allows users to interactively modify and
execute previously entered commands. This compensates for the loss of the history (!)
function of the ’‘C’ shell. This assumes of course that the user is not allowed to use

the C’

To exit

shell.

from this client, the user need simply select the ’exit’ command widget. This

causes the contents of the command list text widget to be saved to the user’s history
file. Once this is complete, the client will terminate.

DESCRIPTION OF MAIN FUNCTION:

This is

the main function of the h_cmd client. It is responsibile for initialization

"&'l‘***ﬂ-*ﬁ******&#ﬂ-#&**li'(

(

LA NN R B S N R S N R TN e BN NS A R 2 I N BN B N I

* o o

*&ll*****t**&l‘it**l’tl'l1l*t***!’**t*&*}******I’*t*tl’l***#*#l***l"**

./h_cmd/h_cmd.c_

of the resource database and all widgets which make up the client window. Once all
widgets and their associated callbacks are initialized and realized, this function
calls the Xtoolkit intrinsic (XtMainLoop) to process all incoming events.

The window presented by this client consists of a hierarchy of widgets. Essentially,
it consists of a main form with several child forms, each of which present one major
function. Each child form in turn controls several widgets. The full hierarchy of
widgets is summarized below:

top =----- > form --+--> form (Client) =--+--> label
| (ID) +--> command (exit client)
|
+==> form (Command) --+--> text (actual command list data)
| (List)

|
+-=> form (Execute) =--+--> command (No Win/No Icon)

{Command) +--> command (Window/No Icon)
+-=-> command (No Win/Icon)
+--> command (Window/Icon)

Each of the forms used is offset from other forms to maintain a consistent layout of
information. The widgets with each form are in turn offset from one another in the
same way. This insures that homogenous widgets remain in close proximity and in a
sensible arrangement.

Once this function calls XtMainLoop, there are a number of callback events which may
be executed. These functions, the command widgets to which they are tied, and the
operations they perform are as follows:

function event operation
cbr_cmd_terminate exit terminate h_cmd client
cbr_command execute command execute a command 1 of 4 ways

For more information on these callback functions, refer to the appropriate source
code file.
SPECIFICATION DOCUMENTS:
/hisde/req/requirements
/hisde/design/design
EXECUTION SEQUENCE:

h_cmd

FILES USED AND APPLICATION DEFINED FORMATS:
Command History File - ~/.history

A command history file is the normal history file maintaine by the UNIX ’'C’

shell. It is always found in the user’s home directory and consistes of an arbi-

trary number of logical lines (strings terminated by newlines) .

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division
Southwest Research Institute

*ﬁhlitlt&ll&lb‘&lil&*il&*l‘&lllll&&l*lt&“'l’l&'l’lﬁt**ii******il&.»‘il

2 RSS2 222222222222 Rttt o2 R s i i i 3 s i, 2 2 2 2 R R Y YR SRR

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

/*

./h__cmd/h__cmdp

3

<stdio.h>
<X1l1/Intrinsic.h>
<X11l/StringDefs.h>
<X1ll/Cardinals.h>
<X1ll/Shell.h>
<Xm/MainW.h>
<Xm/RowColumn.h>
<h_cmd.bit>
<hisde.h>
<h_user_inter.h>
<h_cmd.h>

* pDefine the strings to contain the command history filename.

*/
char

/*

* Declare all
external to

*/

Widget

/*

* Declare all

*/

extern

XtCallbackProc

file (SIZE_FILENAME + 1];

widgets which will be used by this client. this data is made

allow simple access in callback function.

Again,

top, widget,
m main, mb_main, f main, mp_file, mp_run,
f list, t_list;

callback functions used by this client.

cbr_cmd terminate(),
cbr_command 0:

main (argc, argv)

int argc;
char **argv;
{
/%
* Initialize the callback list required for the routine which terminates this client.
* This callback occurs when the user selects the "exit" command.
*/
static XtCallbackRec cb_terminate(] = {
(XtCallbackProc)cbr_cmd terminate, (caddr_t)NULL |},
(XtCallbackProc)NULL, (caddr_t)NULL }
}:
/*
* 1Initialize the callback list required for the function which executes a command.
* For each command widget, the appropriate value will be set for the (closure)
* member.
*/

static XtCallbackRec cb_command(] = {

{

}:

(XtCallbackProc)cbr_command,
(XtCallbackProc)NULL,

(caddr_t)NULL },
(caddr_t)NULL }

/*

*/

/*
*/

/*
*/

/*
*/

Arg icon_arg, /* Argument used to initialize the graphic icen

* for this client.
*/

args[1 1; /* Argument list used to initialize widgets.
*/

Initialize the Xtoolkit, parse command line, and return the root widget which will be
the parent of the main window.

top = XtInitialize (NAME_SHELL, NAME_APLIC, NULL, ZERO, &argc, argv);

If there were arguments on the command line which could not be parsed, call the
function (bad_syntax) to report the error, display the correct syntax, and exit from

the client.

if (argc > 1)
bad_syntax ("h_cmd");

Initialize the icon bitmap for this client.

XtSetArg (icon_arg, XtNiconPixmap,
XCreateBitmapFromData (XtDisplay(top), XtScreen (top) ->root,
h_cmd_bits, h_cmd_width, h_cmd_height)):

XtSetvalues (top, &icon_arg, ONE);

Create the main window widget and the menu bar which will contain all commands.

m main = XmCreateMainWindow (top, "7, NULL, 0)
XtManageChild (m main);

mb_main = XmCreateMenuBar (m_main, "", NULL, 0):
XtManageChild (mb_main);

Create pulldown for file commands.

mp_file = XmCreatePulldownMenu (mb_main, "", NULL, 0);
create_cascade ("", mb_main, mp_file, LABEL_FILE)
create_command ("7, mp_file, LABEL_EXIT, cb_terminate);

Create pulldown for run commands .

mp_run = XmCreatePulldownMenu (mb_main, "", NULL, 0);
create_cascade (NULL, mb_main, mp_run, LABEL_RUN);

cb_command[0] .closure = (caddr_t) NOWIN_NOICON;
create_command (", mp_run, LABEL CMD 1, cb_command) ;
cb_command (0] .closure = (caddr_t) WIN_NOICON;
create_command ("", mp_run, LABEL_CMD_2, cb_command)’
cb_command[0] .closure = (caddr_t) NOWIN_ICON;
create_command ("", mp_run, LABEL _CMD_3, cb_command);
cb_command (0] .closure = (caddr_t) WIN_ICON;

/*

*/

/*

*/

/*
*/

/*
*/

Jh_cmd/h_cmd.c
create_command ("", mp_run, LABEL CMD_4, cb_command);
Create the help cascade.

widget = create_cascade ("", mb_main, NULL, LABEL HELP) ;
XtSetArg (args(0), XmNmenuHelpWidget, widget);
XtSetValues (mb_main, args, 1);:

Create the form which goes in the main window.

f_list = create_form (W_F_LIST M, m main);

Initialize the text widget used for the main edit area.

t_list = create_text (W_T_LIST M, f_ list, "", 1, XmMULTI_LINE_EDIT, 1);
Define the areas which constitute the main window widget.
XmMainWindowSetAreas (m main, mb_main, NULL, NULL, NULL, f_list);

Realize the top level widget. This causes the main form of this client to be
displayed.

XtRealizeWidget (top):

Load in all commands from the user’s command history (~/.history) file. Note
that it is not an error if this file does not as yet exit.

load_commands ();

Enter the normal Xtoolkit main loop, which coordinates processing of the various
widget events. This loop will terminate normally when the user selects ’Exit’
command, which in turn causes the cbr_cmd terminate callback routine to be
executed.

XtMainLoop ();

Jh_cmd/save_cmds.c

/***t*******i**********i*******i********t****i

MODULE NAME AND FUNCTION (save_commands)

This function is called when the user exits from the client. It simply saves the new
1ist of commands to the command history file in the user’s home directory. Note that
this will take place even if a history file does not already exit.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

file (char[]) (I) - String set to the command history filename.

t list (Wwidget) (I) - Text widget to be updated with loaded commands.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
***************i***tt*******t**i********tt**t**t**itt*************t***************t*t***

SN W M % W % W % % N % W s M N M N W % s M % W % %

*x
*
x
%*
*
*
*
*
*
*
*
*
*
* EXTERNAL DATA USED: (I’ - Input 'O’ - Output fI/0’ - Input/Output)
*
*
*
*
*
*
*
*
*
x
*
*
*

#include <stdio.h>
#include <X11l/Intrinsic.h>
#include <hisde.h>
#include <h_user_inter.h>
#include <h_cmd.h>

extern char file[1:;

extern Widget t_list;

int save_commands () /* This function saves all commands in the current
* list of commands to the user’s command history
* (~/.history) file. It will return one of the
* following values:
*
* (0) - Successful operation
* (-1) - Error occurred.
*/
{
FILE *fp; /* File pointer used to open and access the
* user’s history file.
*/
register char *p; /* Pointer used to step through the command list
* in order to write it out.
*/
/*

* Open the command history file. If this fails, output an warning message to
* the system message client.

J/h_cmd/save_cmds.c

if ((fp = fopen (file, "w")) == NULL) ({
display message (MSG_WARNING, “"Could not open the command history file to save")
return (-1); —
}
/*
* Write all data to the file.
x/
p = get_text_widget (t_list);
while (*p)
putc (*p++, fp);
/*
* Close the history file. If an error occurs, output an error to the system message
* client.
*/
if (fclose (fp) !'= 0) {
display_message (MSG_ERROR, "Could not close the command history file");
return (-1);
} else
return (0);
}
Nt

./h_cmd/get_home_dir.c

/i*******t*****i**'ﬁ'ﬁﬁ****ttﬁ***ﬁ***tt********ﬁit**t****ﬁ************tt*t*t****************

* MODULE NAME AND FUNCTION: (get_home_dir) bl
* *
* This function is called to return the home directory of the current user. It examines *
* the /etc/passwd file (via a UNIX function) to get the home directory and then copies *
* the data into a passed string buffer. *
* *
* *
* SPECIFICATION DOCUMENTS: *
* x
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Division *
* Southwest Research Institute *
*t*********‘k****************’k*it*******ﬁt***t*t*ﬁ***t*********t************t*************/

#include <stdio.h>
#include <pwd.h>
#include <hisde.h>

int get_home_dir (path) /* This function provides the user’s home directory.

* Tt returns one of the following values:
*

* (0) - Successful operation
* (-1) - Error occurred.
*/

char *path; /* Pointer to the string to be updated with the user’s
* home directory.
*/

{
struct passwd *pwd_ptr; /* Set to point to the /etc/passwd entry for the

* current user. The home directory is then taken
* from this structure.
*/

extern struct passwd
getpwnam() ; / Function used to get the current users /etc/passwd
* entry.

*/

Use the (getpwnam) call to obtain the /etc/passwd entry for the current user. This
function returns a pointer to a structure containing this data. If a NULL pointer
is returned, output an error to the system message client and return.

Otherwise (success), copy the user’s home directory into the provided parameter and
return.

* % % * * *

if ((pwd_ptr = getpwnam{ cuserid(NULL))) == NULL) {
display message (MSG_ERROR, "Could not determine user’s home directory"):
return (-1);
} else {
strcpy (path, pwd _ptr->pw_dir);
return (0);

/h_cmd/get_home_dir.c

J/h_cmd/load_cmds.c

/**t****ﬁ****************tt***t***ﬁ********t***ti***i*****t**t**********************t****t

MODULE NAME AND FUNCTION (load_commands)

This function is called to load all commands from the current user’s ~/.history file
into the external variable (command_list). This data will later be displayed in the

clients main text widget.

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

file (char[]) (I/0) - String updated to contain the command history file-
name.

t list (Widget) (I) - Text widget to be updated with loaded commands.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
*****i************************t********t**tt****t***t*******t****t*****ﬁ*****t*****ﬁ*****

*
*
x
*
*
*
%*
*
*
*
*
*
*
* EXTERNAL DATA USED: ('I’ - Input ‘O’ - Output ‘I/O’ - Input/Output)
*
*
*
*
*
*
*x
*
*
*
*
*
*

NOF % ¥ % N ¥ M % s % A % w oW W W% % W W % M % % % W

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <hisde.h>
#include <h_cmd.h>

extern char file{ 1:

extern Widget ¢t_list;

This function loads commands from the user’s
~/.history file and places them into the external

variable (command_list). It will return one of
the following values:

int load_commands () /

(0) - Successful operation
(-1) - Error occurred.

* % * X % % X %

~

FILE *fp; /* File pointer used to open and access the user’s
* history file.
*/

register int i=20, /* Pointer used to maintain position in the (string)

* buffer when initializing command list.
x/

ptr = 0, /* Pointer used to maintain position in the command
* list string in the text widget as this data is
* being initialized.
x/

c; /* Used to contain last character read (for EOF
* checking) .

./h_cmd/load_cmds.c

*/

char string{ 101]; /* Buffer used to read in the command list data
* (100 bytes at a time).
*/

Use the user-defined function (get_home_dir) to update (file) with the name of the
command history file to load. Next append the name of the standard UNIX command
history filename (with leading slash).

get_home_dir (file);
strcat (file, FILENAME HISTORY);

Open the command history file. If this fails, output an information message to
the system message client. Note that it is not an error if such a file does not
exist.

return (load_text_widget (file, t_list, 0));

Jh_cmd/cbr_cmd_trm.c |

/************’k*t***i***************t*********************t*********t***************tti***i

* MODULE NAME AND FUNCTION (cbr_cmd_terminate)

* *
* This callback function is activated when the user selects the exit command widget. It *
* is responsible for normal termination of the h_cmd client. It simply destroys the top *
* level widget, which in turn causes all subordinate widgets to be destroyed. *
* *
* *
* SPECIFICATION DOCUMENTS: *
* *
* /hisde/req/requirements *
* /hisde/design/design *
* *
* *
* EXTERNAL DATA USED: (I’ - Input ‘0’ - Output ’1/0’ - Input/Output) *
* *
* top (Widget) (I) - Pointer to the root widget of the main window. *
* *
* *
* ORIGINAL AUTHOR AND IDENTIFICATION: *
* *
* Mark D. Collier - Software Engineering Section *
* Data System Science and Technology Department *
* Automation and Data Systems Diviaion *
* Southwest Research Institute *
****t*********************i***tt**t****tt***i***i****tt*i***i'kit*ﬁ**********t************/

#include <X1ll1/Intrinsic.h>

extern Widget top:

XtCallbackProc cbr_cmd_terminate (widget, closure, calldata)

Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter is not
* used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client. This parameter is
* is not used by this function.

*/
{
XEvent event; /* Event structure needed to make the calls to the
* XtNextEvent and XtDispatchEvent functions.
*/
/%
* Save all commands to the user’s command history file. This will allow the commands
* to be used next time the user logs in.
*/
save_commands ();
/*
*

Destroy the root application shell widget and thereby, all subordinate widgets which
make up the window.

»

*

Jh_cmd/cbr_cmd_trm.c
XtDestroyWidget (top)

Determine if any events have been queued. These will normally be events which
cause the widgets destroy callback to be executed. Waiting and then processing
the events insures that all data structures initialized by the widgets are
properly deallocated.

XtNextEvent (&event);
XtDispatchEvent (&event);

Close the display to deallocate any connections set up by X Windows. Next
exit from the client.

XCloseDisplay (XtDisplay (top));
exit (0);

./h__info/Makeﬁle

##
Makefile for HISDE user interface client (h_info).
##############*################################*#############################*############

#

% Define the target which this file is to create.
#

TARGET = h_info

#

Initialize include and library search paths to include current directory and the
HISDE directories. Note that the library path also includes the user interface

library.

*

BINDIR = /hisde/bin

INCDIR = /hisde/src/include
INCDIRS = -I. -I$(INCDIR)

#

Define the libraries to search. This includes the HISDE library, the local user
interface library, and all required X libraries.

#
LIBRARIES = -lui -lhisde -1Xm -1Xt -1X11
#
Define the compiler and linker flags.
#
CFLAGS = =0 $(INCDIRS)
LDFLAGS = -0 $(EXTRAFLAGS)
*
Define all objects which make up this target.
#
OBJS =\
cbr_info_trm.o\
cbr_select.o\
tmr_mon_upd. o\
h_info.o
#
Define all header files required.
#
HDRS =\
$ (INCDIR) /h_info.h\
$ (INCDIR) /h_info.bit\
$(INCDIR) /h_user_inter.h\
S (INCDIR) /hisde.h
#
Make the target.
#
all: $ (TARGET)

$(TARGET) : $ (OBJS)
$(CC) -o $@ $(OBJS) S(LIBRARIES) $(LDFLAGS)
strip $(TARGET)
mv $ (TARGET) $(BINDIR)

J/h_info/Makefile

$ (OBJS) : $ (HDRS)

./ll_infoﬁx_finfo .c

/****i************t***i*****tt********ii******i****itﬁ****************************itt*t**i

*
*
*
*
*
*®
*
*x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

MODULE NAME AND FUNCTION: (h_info)

This client is used to provide the user with all HISDE-specific information. It pro-
vides all data which is unique to the HISDE system, including the following items:

Username - the name of the user currently logged into the workstation.

Operation mode - the mode of operation on the current workstation (development,
simulation, or flight).

Classification - the classification mode of the current workstation (non-classi-
fied, secret, or classified).

Current Host - the host system to which unqualified communications requests will
be routed. Note that the user may update this item if desired.

Current Flight - the current flight being accessed and/or controlled by the HISDE
system. Note that the user may update this item if desired.

Host list - a list of all host and workstation systems which are accessible from
the current workstation.

Realtime data sources list - a list of all realtime data sources which are cur-
rently being accessed by processes on this work-
station.

Flight list - a list of all flights which are currently active.

In addition to viewing this data, the user will be able to easily update the current
host or flight.

wWhen this client executes, it will display a main window which presents each of the
data items described above. For the username, operation mode, and classification, it
is not possible to alter the contents of the item (this is true for the data lists as
well). The current host and flight fields however may be changed if the user desires.
In such a case, the user may simply enter the desired value or ‘cut and paste’ text
from the appropriate data list field. When the new text is in place, the user need
simply exit from the field. At this time, the system data item (and any initialized
monitor window) will be updated.

The three data list fields may at any given time contain data which is too large to be
seen at once on the field. Therefore, each provides a scrollbar which allows the user
to easily page through the data.

DESCRIPTION OF MAIN FUNCTION:

This is the main function of the h_info client. It is responsibile for initialization
of the resource database and all widgets which make up the main window and the popup
monitor windows. Once all widgets and their associated callbacks are initialized and
realized, this routine calls the Xtoolkit intrinsic (XtMainLoop) to process all in-
coming events.

This routine initializes the application-specific resources (or options) allowed by
this client. These resources may be set in the server, in an .Xdefaults file, or on
the command line. For a complete listing of these resources, refer to the main header
block.

This routine initializes 6 distinct hierarchies of widgets to present the monitor and
main windows. The monitor windows each consist of a popup shell widget and a child
label widget. They are "popped™ up and down as requested by the user. As they are
shell widgets, it is possible to manipulate them in a manner which is independent of
the main window. This assumes of course that the user has access to a window manager.

o b ok 2 % R X N N % % ¥ X W % N % % X B N % % W % % W W N % % % M ¥ W % M W N Nk ¥ X * ¥ ¥ % X X A H X A X * X * A * X

J/h_info/h_info.c

*

* The main window consists of a complicated hierarchy of widgets. Essentially, it con-
* sists of a main form with several child forms, each of which present one major piece
* of information. Each child form in turn controls several widgets, as required by the

{

* associated data. The full hierarchy of widgets is summarized below:
*
top -=---- > form --+--> form (Client) --+--> label
I (ID) +-=> command (exit client)

|

+--> form (Username) --+--=> label

] +--> command (initialize monitor window)
| +-=> text {actual data)

|

+--> form (Operate) =--+--> label

| (Mode) +-=> command (initialize monitor window)
| +=-=> text (actual data)

|

+-~> form (Operate) ~-+--> label

| (Classif) +=--> command (initialize monitor window)
| +=-=> text (actual data)

|

+--> form (Current) =--+--> label

Il‘llli‘l*!l#&lll&il&l.lll&

| (Host) +--> command (initialize monitor window)
| +==> text (actual data)

|

+-=> form (Current) -=+-=> label

[(Flight) +--> command (initialize monitor window)
| +-=> text (actual data)

]

+--=> form (Host) ==+-=> label

) (List) +=-=> text (data list with scrollbar)

*
*
o
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*x
*
*
*
*
* | em
* +--> form (Realtime) -~+--> label

* | (List) +--> text (data list with scrollbar)
*]

* +-=> form (Flight) =--+--> label

* (List) +-=> text (data list with scrollbar)
*
*
»*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Each of the forms used is offset from other forms to maintain a consistent layout of
information. The widgets with each form are in turn offset from one another in the
same way. This insures that homogenous widgets remain in close proximity and in a
sensible arrangement.

Once this function calls XtMainLoop, there are a number of callback, timer, and action
events which may be executed. These functions, the command widgets/timer/action event
to which they are aried, and the operations they perform are as follows:

function event operation

cbr_info_terminate exit terminate h_info client

cbr_monitor_ init init monitor pop up or down a monitor window
act_monitor update leave field update monitor data for host or flight
tmr_monitor update timer update host, rts, or flight list

For more information on these callback, timer, and action functions, refer to the
appropriate source code file.

‘#*lliil‘-‘I‘l‘*‘lt&*&w&‘il"l

SPECIFICATION DOCUMENTS:

/hisde/req/requirements
/hisde/design/design

* % % » ¥

Jh_info/h_info.c

EXECUTION SEQUENCE:
h_info ({-interval value)

-interval value - optional argument which allows the user to specify the inter-
val (in seconds) used to update the host, realtime data source,
and flight lists. The value must be in the range of 10 to 300
seconds. If not specified, the default of 30 seconds will be
used.

SYSTEM RESOURCES USED:

This client indirectly accesses and updates the HISDE shared memory segment via rou-
tines in the HISDE library.

EXTERNAL DATA USED: (’I’ - Input ‘O’ - Output 'I/O’ - Input/Output)

This routine initializes all declared widget variables, the strings which contain
the HISDE information, and the timer value.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
*********i**ii******t****t**ﬁt*******i***i***tttttitt*******t*****i**********ttt********

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* %
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* /

#include <stdio.h>

#include <X1l1l/IntrinsicP.h>
#include <X11/StringDefs.h>
#include <X1l1/Cardinals.h>
#include <X11/Shell.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Text.h>
#include <Xm/List.h>
#include <hisde.h>

#include <h_user_inter.h>
#include <h_info.h>
#include <h_info.bit>

/*

*

Declare the variable used to contain the timer value. It is made external to allow
* it to be used in the function which is executed upon completion of the timer. By

* default, it is initialized to 30 seconds, but may be changed by the user.

*/

unsigned int timer_ value = DEFAULT TIMER VALUE;

/*
Declare all widgets which will be used by this client. Again, this data is made
* external to allow simple access in callback, timer, and action functions.

*/
v
Widget top, m_main, mb_main, mp_file, widget, form,
t_username,
t_mode,

t_class,

Jh_info/h_info.c

t_host,
t_£flight,
t_rts, e
t_lhosts,
t_lflights,
t_lrts:
/*
* Declare all callback, action, and timer functions used by this client.
*/
extern XtCallbackProc cbr_info_terminate(),

cbr_select 0:

extern XtTimerCallbackProc tmr_monitor_update();

main (argc, argv)
int argc;
char **argv;

* Define the application-specific resources allowed by this client. These values
* may be set previously (in server or .Xdefaults) or in the command line.

static XrmOptionDescRec options[] = { '
{ "-interval”®, "Interval", XrmoptionSepArg, NULL }
bi

Specify the variables which will be updated if any of the application-specific
resources were specified. Note that if any of the monitor window resources

are included, the appropriate boolean variable (monl, mon2, mon3, mon4, or monS5)
will be set to TRUE. If an update interval is specified, the (timer_value)
variable will be set.

* % % % % * *

static Boolean monl, mon2, mon3, mon4, mon$5;

static XtResource resources|{] = {
{ "interval®", “T"Interval”, XtRInt, sizeof (int), (Cardinal)&timer_value,
XtRInt, (caddr_t)&timer_ value }
}:

* 1Initialize the callback list required for the routine which terminates this client.
* This callback occurs when the user selects the "exit" command.

static XtCallbackRec cb_terminate([] = |
{ (XtCallbackProc)cbr_info_terminate, (caddr_t)NULL },
{ (XtCallbackProc)NULL, (caddr_t)NULL }
}:

static XtCallbackRec cb_select|] = {
((XtCallbackProc)cbr_select, (caddr_t)NULL },
{ (XtCallbackProc)NULL, (caddr_t)NULL }
b L

* Declare all information items which are presented by this client. This data is
* external, as this greatly simplifies its use in callback functions.

Jh_info/h_info.c

char username [SIZE_USERNAME + 1],
mode [SIZE_MODE + 1],
h class [SIZE_CLASS +117,
host [SIZE_HOSTNAME + 11,
flight [SIZE_FLIGHT + 1],
rts [SIZE_HOSTNA.ME + 11,
flight list[SIZE_FLIGHT_LIST + 1],
host_list [SIZE_HOST_LIST + 11,
rts_list [SIZE‘._RTS_LIST + 1]

Arg icon_arg, /* Define the argument used to initialize the

* graphic icon for this client.

*/
args[1]):

* Use HISDE library routines to retrieve the initial values from shared memory. If
* any call returns an error {nonzero), output a message and exit from this client.

*/

if (h_get_username { username) 1
h_get_mode (mode) 1
h_get_class (class) 11
h_get_host { host)y 1
h_get_flight (flight) N
h_get_realtime host (rts) I
h_list_hosts (host_list) |
h_list_flight (flight_list) ||
h_list_realtime_hosts (rts_list)) |

— h_message (MSG_ERROR, "Could not retrieve system information values”);
exit (1);

/*
* Initialize the Xtoolkit, parse command line, and return the root widget which will be
* the parent of the main window. Note that this call also parses all application
* specific resources.
*/

top = XtInitialize (NAME_SHELL, NAME_APLIC, options, XtNumber(options), &argc, argv)
/*

* If there were arguments on the command line which could not be parsed, call the
* function (bad_syntax) to report the error, display the correct syntax, and exit from
* the client.

if (argc > 1)
bad_syntax ("h_info [-interval value]"”);

/*
* TInitialize the icon bitmap for this client.
*/
XtSetArg (icon_arg, XtNiconPixmap,
XCreateBitmapFromData (XtDisplay(top), XtScreen(top)->root,
h_info_bits, h_info_width, h_info_height)):
XtSetValues (top, &icon_arg, ONE);

/*

* R X A ¥ X * % #¥

~

/t
*/

/*
*/

/*
*/

/%
*/

Jh_info/h_info .C

Retrieve any application-specific resources which were initialized previously or in
the command line. This includes both initialization of monitor windows and the
data update interval. ~—

Upon return, check if the user has specified an invalid timer value. The timer value
used must be in the range of 10 to 300 seconds. If an invalid value was specified,
output a message and set the value to the default (30 seconds or 30000 milli-
seconds). Otherwise, multiply the specified value by 1000 to get it into miil-
seconds.

XtGetApplicationResources(top, (caddr_ t)NULL, resources, XtNumber (resources),
NULL, 2ERO):

if (timer_value < MIN_TIMER VALUE || timer value > MAX TIMER VALUE) {
h_message (MSG_WARNING, "Invalid timer value specified - Default will be used")
timer_ value = DEFAULT_TIMER VALUE * 1000;

} else
timer value = timer value * 1000;

Create the main window widget and the menu bar which will contain all commands.
m main = XmCreateMainWindow (top, "", NULL, 0);

XtManageChild (m_main);

mb_main = XmCreateMenuBar (m_main, "", NULL, 0);-

XtManageChild (mb_main);

Create pulldown for file commands. e

mp_file = XmCreatePulldownMenu { mb_main, "", NULL, 0):
create_cascade ("", mb_main, mp_file, LABEL FILE)i
create_command ("", mp file, LABEL _EXIT, cb_terminate);

Create the help cascade.

widget = create_cascade ("", mb_main, NULL, LABEL HELP);
XtSetArg (args(0], XmNmenuHelpWidget, widget);
XtSetValues (mb_main, args, 1);

Create the form which is used for the main information window. This form will be
the parent to all widgets except those used for the monitor windows.

form = create_form ("", m_main);
Initialize all single line fields.
create_label (W_L_USER M, form, LABEL_USERNAME) ;
(

t_username = create_text T _USER M, form, username, 0, XmSINGLE_LINE_EDIT, O0);

Ccreate_label (W_L_MODE_M, form, LABEL MODE)

t_mode = create_text (W_T _MODE_M, form, mode, O, XmSINGLE_LINE_EDIT, 0)
create_label (W_L_CLASS_M, form, LABEL CLASS)

t_class = create_text (W_T CLASS_M, form, class, 0, XmSINGLE _LINE EDIT, 0);

J/h_info/h_info.c

create_label (W_L_HOST_M, form, LABEL_HOST);
T t_host = create_text (W T_| _HOST M, form, host, 0, XmSINGLE_LINE_EDIT, 0);

create_label

(L _FLIGHT M, form, LABEL_FLIGHT);
t_flight = create_text (T

W_

W_ FLIGHT M, form, flight, 0, XmSINGLE_LINE_EDIT, 0):
create_label (W_L_RTS_M, form, LABEL RTS);

t_rts = create_text (W_T_RTS_M, form, rts, 0, XmSINGLE_LINE_EDIT, 0);

/*
* (Create all list labels.
*/
create_label (W_L_ LHOSTS_M, form, LABEL_ LHOSTS)
create_label (W_L_LFLIGHTS_M, form, LABEL_LFLIGHTS);
create_label (W_L_LRTS_M, form, LABEL LRTS);
/*

* Create the scrolled lists. Each has a callback initialized to process selection of
* an entry in a list.

cb_select[0].closure = (caddr_t)CB_HOST;
XtSetArg (args[0], XmNbrowseSelectionCallback, cb_select)
XtManageChild (t_lhosts = XmCreateScrolledList (form, W_S_LHOSTS_M, args, 1));

cb_select(0].closure = (caddr_t)CB_FLIGHT;
XtSetArg (args{ 0 1, XmNbrowseSelectlonCallback, cb_select)
XtManageChild (t_lflights = XmCreateScrolledList (form, W_S_LFLIGHTS_M, args, 1));

cb_select(0].closure = (caddr_t)CB_RTS;
XtSetArg (args(0], XmNbrowseSelectionCallback, cb_select);

XtManageChild (t_lrts = XmCreateScrolledList (form, W_S_LRTS_M, args, 1)):
/*
* TInitialize each list.
*/
init_list (t_lhosts, host_1list)
init_list (t_lflights, flight_list);
init_list (t_l1rts, rts_list)i
/t
* 1Initialize the first iteration of the timer. This will cause the tmr_data_update
* callback routine to be executed. This routine in turn will re-initialize each
* timer event, as they are deinitialized once they occur.
*/
XtAddTimeOut (timer value, tmr_monitor_update, NULL):
/*

* Realize the top level widget. This causes the main form of this client to be
displayed. Note that if the user included the "-iconic" parameter in the command
* line, the form will be displayed as an icon.

XtRealizeWidget (top):

~— /%
* Enter the normal Xtoolkit main loop, which coordinates processing of the various

widget events. This loop will terminate normally when the user selects the

"Exit" command, which in turn causes the cbr_info_terminate callback routine to be

executed.

* ¥ ¥

*/

XtMainLoop ():

J/h_info/h_info.c

J/h_info/tmr_mon_upd.c

/tt***************************t**********ﬁ**i**t**********t*************i***************tt
MODULE NAME AND FUNCTION (tmr_monitor_update)

This is a callback function which is activated at a defined interval. By default,
this interval is 30 seconds, but may be set by the user at execution time within the
range of 10 to 300 seconds. The interval is stored in the external (timer_value). It
is never updated once this client is running.

This function is activated in order to update those fields which contain dynamic data.
These include:

o Host list - list of all active hosts.
o Flight list - list of all active flights.
o Realtime data list - list of all active realtime data sources.

For more information on these fields and the data they present, refer to the main
module header.

SPECIFICATION DOCUMENTS:
/hisde/req/requirements

/hisde/design/design

EXTERNAL DATA USED: ('I’ - Input o' - Qutput 'I/0" - Input/Output)

b
]
*
*
*
*
*
*
*
*
*
*
*
*
x
x
*
*
*
x
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*

timer_value (unsigned) (I) - The timer value which determines the interval be-
tween calls to this function. *
*
t_lhosts (Widget) (I) - Pointer to the text widget containing the list of *
active hosts. *
*
t_lrts (Widget) (1) - Pointer to the text widget containing the list of *
of realtime data sources. *
*
t_lflights (Widget) (I) - Pointer to the text widget containing the list of *
active flights. *
*
L]
ORIGINAL AUTHOR AND IDENTIFICATION: *
*
Mark D. Collier - Software Engineering Section *
Data System Science and Technology Department *
Automation and Data Systems Division *
Southwest Research Institute *
t**********t*********************t**t***t***tt**t**********t********t****i*t*t**********/

#include <X1l1/Intrinsic.h>
#include <hisde.h>
#include <h_info.h>

extern unsigned timer_ value;

extern Widget t _lhosts,
t_lrts,
t_1lflights;

XtTimerCallbackProc tmr _monitor_ update (client_data, id)

caddr_t client_data; /* Character data passed to this callback function.

* * »

./h_info/trnr_rnon_upd,c

* It is currently unused by this function.

*/
e
XtIntervalld *id; /* Identifies the timer which caused this function to
* be activated.
*/
static char
host_list_t [SIZE_HOST_LIST + 1],
/* Temporary buffer used to get the most recent host
* list. It is compared to the current list to de-
* termine if it needs to be updated.
*/
flight_list_t{ SIZE_FLIGHT_LIST + 1],
/* Temporary buffer used to get the most recent
* flight list,
*/
rts_list_t [SIZE_RTS_LIST +1];
/* Temporary buffer used to get the most recent
* real-time data scurces list.
*/
Update the list of hosts. Note that in the unlikely event that the h_list hosts
function fails, output a message and exit.
if (h_list _hosts (host_list t) == 0)
update_text_widget (t_lhosts, host_list_t):
else |
h_message (MSG_ERROR, "Could not retrieve the list of current hosts"); o’

exit (1);

As described for the host list widget, update the list of real-time data sources.

if (h_list_realtime_hosts (rts_list t) == 0)
update_text_widget (t_lrts, rts_list t);

else {
h_message (MSG_ERROR, "Could not retrieve the list of current realtime sources")

exit (1);

As described for the host 1list widget, update the current flights list widget.

if (h_list_flight (flight_list t) == 0)
update_text_widget (t_lflights, flight_list_t);

else {
h_message (MSG_ERROR, "Could not retrieve the list of current flights");
exit (1);
}
Reinitialize the timer to cause this function to be executed at the next interval. —~r

It is necessary to perform this each time as the interval is deinitialized after
it completes (indicated by execution of this function).

XtAddTimeOut (timer_value, tmr_monitor_ update, NULL);

Jh_info/tmr_mon_upd.c

J/h_info/cbr_info_trm.c

/*********i***i*****ﬁt***i*******t*************ﬁ***t***ﬁ*t********t****t*****t****t******ﬂ

MODULE NAME AND FUNCTION (cbr_infc_terminate) *

*

*

* This callback function is activated when the user selects the exit command widget. It -
* is responsible for normal termination of the h_info client. It simply destroys the

* top level widget, which in turn causes all subordinate widgets (including the popup

* shells to be destroyed.

*
*
*
*
*

SPECIFICATION DOCUMENTS:
/hisde/req/requirements
/hisde/design/design

EXTERNAL DATA USED: (I’ - Input ‘0O’ - Qutput ‘I/0’ - Input/Output)

top (Widget) (I) - Pointer to the root widget of the main window.

ORIGINAL AUTHOR AND IDENTIFICATION:

Mark D. Collier - Software Engineering Section
Data System Science and Technology Department
Automation and Data Systems Division

Southwest Research Institute
ﬁ**ttt**********t*****tﬁ***t********t*tt****t*t**t*******i******t**********t*t*****t/

¥ * % * % ® o X X X N A A * O N W W W N * lt

#include <X11/Intrinsic.h>

extern Widget top:;

XtCallbackProc cbr_info terminate (widget, closure, calldata)

Widget widget; /* Set to the widget which initiated this callback
* function.
*/
caddr_t closure, /* Callback specific data. This parameter is not
* used by this function.
*/
calldata; /* Specifies any callback-specific data the widget

* needs to pass to the client. This parameter is
* is not used by this function.

*/
{
XEvent event; /* Event structure needed to make the calls to the
* XtNextEvent and XtDispatchEvent functions.
*/

* Destroy the root application shell widget and thereby, all subordinate widgets which
* make up the window and any popup windows used for monitors.

XtDestroyWidget (top):

* Determine if any events have been queued. These will normally be events which
cause the widgets destroy callback to be executed. Waiting and then processing
* the events insures that all data structures initialized by the widgets are

./h_info/cb:_info_trm.c

* properly deallocated.

XtNextEvent { &event):
XtDispatchEvent (&event):

* (Close the display to deallocate any connections set up by X Windows. Next
* exit from the client.

XCloseDisplay (XtDisplay (top))/
exit (0);

Jh_info/cbr_select.c

/t*t**it************************k*******t******************t***********t**t***********ﬁ*tt
cbr_select

* MODULE NAME AND FUNCTION:
*

This callback is executed when the user selects a string from either the hosts,

flights, or rts lists. It will automatically updates the corresponding text

0’ - Output ‘I/0’ -